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Abstract The diversity and availability of

information sources on the World Wide

Web has set the stage for integration and

reuse at an unparalleled scale. There remain

signi�cant hurdles to exploiting the extent

of the Web's resources in a consistent, scal-

able and maintainable fashion. The auton-

omy and volatility of Web sources compli-

cates maintaining wrappers consistent with

the requirements of the data's target appli-

cation. This paper describes the ArcRank

model of relationships between nodes in a di-

rected labeled graph, such as hypertext. The

paper presents a ranking algorithm for di-

rected arcs, and the algorithm for extraction

of hierarchical relationships between words

in a dictionary. Using ArcRank we cre-

ate a thesaurus style tool to aid in the in-

tegration of texts and databases whose con-

tent is similar but whose terms are di�er-

ent. These algorithms complement hand-

crafted thesauri, by determining more com-

plete relationships between words, although

they are less speci�c. Exploiting hierarchies

of relationships between words paves the way

for broadening and related term queries in

web-based repositories.
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geneity, thesaurus, extraction
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1 Introduction

The principal obstacle in integrating informa-
tion from multiple sources is their semantic
heterogeneity. The most easily recognized form
of heterogeneity is when di�erent terms are
used to mean the same thing: lexical hetero-
geneity. Even so, there is no algorithmic pro-
cedure to authoritatively resolve problems of
lexical heterogeneity. However, we still desire
assistance in determining semantically related
terms.

Our experiments use an on-line version of
the 1913 Webster's dictionary that is available
through the Gutenberg Project [1]. The origi-
nal dictionary is a corpus of over 50 MB con-
taining some 112,000 terms, and over 2,000,000
words in the de�nitions alone. We have been
working on the problem of automatically ex-
tracting thesaurus entries, using the following
graph structure: each head word and de�nition
grouping is a node, each word in a de�nition
node is an arc to the node having that head
word.

After accounting for the most common prob-
lems in constructing the graph, a naive script
mis-assigns over �ve percent of the words, be-
cause of di�erences between the actual data in
the dictionary and its assumed structure. Er-
rors in the computation of the graph would
a�ect any subsequent computation of related
terms for the thesaurus application. Therefore,
we set a goal of 99% accuracy in the conversion
of the dictionary data to a graph structure.



Using a novel algebraic extraction technique
we were able to generate such a graph struc-
ture and then use it to create thesaurus entries
for all words de�ned in the structure including
stop words such as `the', `a', `and' that most
sytems speci�cally list so as to ignore. The the-
saurus engine, based on our relationship rank-
ing technique, constructs more complete repos-
itories than manually constructed thesauri, al-
though they are less speci�c. It is a potentially
important tool for systems integration experts.

1.1 Related work

Some early work on constructing taxonomies[2]
and extracting semantic primitives [3] used a
graph generated from the dictionary de�ni-
tions. Examples of lexical knowledge bases that
relate terms according to some two dozen re-
lationships, are the handcrafted WordNet [4],
and MindNet [5]. MindNet is generated by
phrase parsing in the dictionary.

PageRank[6] is the algorithm that underlies
the material in this paper. Algorithms that op-
erate on a matrix representation of word gra-
phs include LSI [7] and hubs and authorities [8].
WHIRL [9] attempts database integration us-
ing novel IR based textual similarity queries.

1.2 Motivation

The starting point for this work is the hypothe-
sis that structural relationships between terms
are relevant to their meaning. These relation-
ships become interesting when all items in the
domain of interest contain them, and are or-
ganized according to them. Dictionary de�ni-
tions form a closed domain in the sense that the
set of words used in de�nitions are de�ned else-
where in the dictionary. This property leads to
a directed labeled graph representation of the
dictionary. Nodes of the graph model de�ni-
tions, head words are labels for the nodes, and
a word in a de�nition represents an arc to the
node having that word as a label. Notable col-
lections which are not closed include encyclo-
pedias, which cover a set of terms equivalent
to the dictionary nouns, and search engines,

which return documents for all but stop words.

At �rst glance, the PageRank model of Web
structure does not lend itself to direct appli-
cation in non-hypertextual domains. How-
ever, we have found that a related model,
which we call ArcRank, is useful for extract-
ing relationships between words in a dictionary.
This model expresses the importance of a word
when used in the de�nition of another. The at-
traction of using the dictionary as a structur-
ing tool is precisely that head words are dis-
tinguished terms for the de�nition text. This
extra information allows types of analysis that
are not currently performed in traditional data
mining, and IR, where no term is assigned as
`head word' of a document. Interestingly, we
now �nd that this new analysis may also be ap-
plied to document classi�cation and the rank-
ing of results of mining queries.

2 Background

In this section we present the basis of our dic-
tionary structuring techniques. Before present-
ing the ArcRank measure, we present the Page-
Rank algorithm, and the variants we have used
in our experiments.

2.1 Graph Extraction

Substantial manipulation is required to bring
the dictionary data into a format ready for gen-
erating a graph [10]. Head words and de�ni-
tions are in a many to many relationship si-
nce head words have variant spellings and def-
initions have multiple di�ering senses. Other
problems in the transformation process are
listed below.

� syllable and accent markers in head words
� misspelled head words
� accents and special characters
� mis-tagged �elds
� common abbreviations in de�nitions (etc.)
� stemming and irregular verbs (Hopelessness)
� multi-word head words (Water Bu�alo)
� unde�ned words with common pre�xes (Un-)
� unde�ned hyphenated and compound words
(Sea-dog)



Table 1: PageRank
input: directed graph, output: scored node list

1. Make adjacency list representation of directed
graph

2. Make rank array of size jnj for graph nodes

3. Set (round 0) rank p
0s = 1=n for all nodes s

4. While rankchange > threshold (round i)

5. For nodes s in f1� � �jnjg (ranking step)

6. For arcs as;t in s's adjacency list as

7. Transfer rank p
is=jasj from source s to

target t

8. For nodes s in f1� � �jnjg (adjustment step)

9. Normalize, if needed, rank p
is wrt to total

rank

10. Compute rankchange from previous itera-
tion

11. Return �nal values from rank array

For example, when a conjugated verb form
appears as a head word we use it for generat-
ing graph arcs. Otherwise we stem de�nition
words until we �nd a head word that matches.
Also, whenever we �nd instances of a multi-
word head word in the de�nitions, we prefer
it over the individual words for generating a
graph arc. Since words often appear multiple
times in a single de�nition we allow multiple
arcs between graph nodes. Dealing with un-
de�ned terms and spelling errors is the most
complex issue in the graph generation, and ac-
counts for the quasi-totality of the structural
errors in the graph. In the following we de�ne
the algorithms that run on the graph structure.

2.2 PageRank

The PageRank algorithm forms the basis of
the ranking technique described in this paper,
and is important to de�ne before discussing the
ranking of arcs. Table 1 below is a pseudocode
description of the algorithm:

This algorithm is a 
ow algorithm which as-
sumes no capacity constraints on the arcs be-
tween nodes. All nodes begin with an initial

ranking, in our case a constant 1=jnj, where jnj
is the number of nodes in the graph. At each
iteration, nodes distribute their rank to their
neighbors on outgoing arcs, and receive rank
from neighbors on incoming arcs. The total
outgoing 
ow from a node is never greater than
its rank,

P
t as;t � ps, nor is any individual

as;t ever less than zero. The intuition behind
the 
ow is that more richly connected areas
of the graph carry larger capacity, and there-
fore nodes in these areas maintain a higher
rank. The rank 
ow of nodes in strongly con-
nected aperiodic graphs is shown to converge
to a steady state [11]. Steady state 
ow is de-
sirable, because it allows us to assert stable
relationships between nodes in the graph. In
practice, we accept variability in the 
ow be-
tween nodes, so long as the total variability
over the entire graph lies below a threshold.
In general graphs, nodes and clusters of

nodes with only outgoing arcs act as sources
which lose all of their rank. Likewise, nodes
with incoming arcs only act as sinks for the
rank of their neighbors. The dictionary graph
contains both source and sink nodes: sources
are words which are never used in other words'
de�nitions, sinks are words whose de�nitions
are not found in the dictionary. In our applica-
tion sinks consist of misspellings, proper nouns
such as geographical and Latin species names,
and scienti�c formulae, which we do not con-
sider. In PageRank the rank of sources, sinks
and weakly connected clusters do not re
ect
their structural di�erences well. In our algori-
thm the �nal rank of a node should be de�ned
in such a way that when any two nodes have a
distinct pattern of connections, then their rank
will di�er. We adapt the algorithm from Ta-
ble 1 in one of the following three ways so that
sources and weakly connected clusters preserve
some rank at each iteration.

1. redistribute b%(b=100) of total graph rank be-
fore each iteration

2. limit rank transfer to a fraction 1=c of a node's
rank

3. add a self-arc at;t (node t is both source and
target) to nodes



By selecting a non zero threshold for ter-
mination of PageRank, and one of the above
adaptations, we ensure that all graph nodes
preserve a non zero rank. We show here that,
given a node t, at iteration i with rank p

it, the
following holds:

Theorem 1 8t 2 G; p
it > 0

Proceeding by induction, we have: by de�ni-

tion, at the initial iteration, p
0t = 1=n > 0.

Assuming the property holds at iteration i, the
following holds:

p
i+1t = fb=100; 1=c; p

it=(jatj+ 1)g+
X

v 6=t

av;t

Since, by de�nition all quantities on the right

hand side are positive and greater than zero,

p
i+1t is greater than zero. As indicated by the

equation, this property holds for each Page-

Rank variant enumerated above.

We see that PageRank for dictionary terms
represents the transitive contribution of each
term to the de�nitions of all of the dictionary
terms. We capitalize on this property to com-
pute the relative importance of terms with re-
spect to each other. This measure is a feature
of the arcs between nodes, or equivalently in
the dictionary, the usage of terms in the de�-
nitions of others.

2.3 Relative Arc Importance

In the dictionary application, PageRank su�ers
from some inherent limitations. First of all,
PageRank is inherently a node oriented algori-
thm. The top ranked nodes are the common
conjunctions and prepositions, which convey
little conceptual meaning, and are commonly
considered stop words by other applications.
It is clear that on its own, PageRank is in-
su�cient to conceptually organize the dictio-
nary structure. We may consider an exten-
sion to PageRank which assigns to each arc
the amount of rank that 
ows across it at each
iteration. As an absolute measure, this exten-
sion is also unsatisfactory, because it favors

ows between the most highly ranked terms,

that is, between stop words. Besides this ob-
vious extension, there appears to be no self-
evident technique to extract an absolute arc-
based measure from PageRank.

However, our original goal is to identify the
most important arcs for a given individual
node. By casting our ranking problem in terms
of our original goal we see that rather than an
absolute measure, a relative measure between
nodes is preferable. For any term in the dictio-
nary, the words that signify the most in their
de�nition should correspond to the arcs in the
graph which are most signi�cant in a ranking
of arcs. Hence we arrive at the relative mea-
sure of arc relevance. Given an edge e, having
source node s with rank ps, target node t with
rank pt, and given jasj outgoing arcs from s,
the arc relevance r for e is de�ned as:

re =
ps=jasj

pt

When s and t share several (m) edges
e1 : : :em, we sum the arc ranks to compute the
importance of t in the de�nition of s:

rs;t =
mX

e=1

ps=jasj

pt

rs;t measures the relative contribution of the
rank of s to the rank of t which we show has
desirable properties, such as:

Theorem 2 0 < rs;t � 1

This follows directly from Theorem 1 and

the de�nition of pt, since both numerator

and denominator must be positive and pt =P
v pv=javj = ps=jasj +

P
v 6=s pv=javj ) pt �

ps=jasj.

Note that the arc importance measure is
an indicator valid only in the immediate local
vicinity of the end points of the arc. There is
no reason to expect it to be globally commen-
surate. Having established an arc importance
measure we are ready to present the ArcRank
algorithm, and walk through a hierarchical set
of relationships the algorithm uncovers.



3 ArcRank

In the previous section, we have computed a
relative measure of arc importance. Here we
show how to rank it with respect to both the
source and target nodes, to promote arcs which
are important to both endpoints. We discuss
the repository we construct using ArcRank,
and compare it to other systems.

3.1 ArcRank Algorithm overview

The ranking of an arc according to the arc im-
portance metric de�ned above is typically dif-
ferent at the source and the target node. In-
deed, it is possible for the highest arc impor-
tance value of arcs from a source node to be
the lowest value for arcs coming into the tar-
get node. ArcRank, de�ned in Table 2 below,
computes a mean of the ranked importance of
arcs, so as to promote arcs which are impor-
tant both to the source nodes and to the target
nodes.

Table 2: ArcRank
input: triples (source s, target t, arc importance
vs;t)

1. given source s and target t nodes

2. at s, sort vs;tj and rank arcs rs(vs;tj )

3. at t, sort vsi;t and rank arcs rt(vsi;t)

4. compute ArcRank: mean(rs(vs;t); rt(vs;t))

5. Rank Arcs input: sorted arc importance

� sample values
f0:9; 0:75;0:75; 0:75; 0:6;0:5; : : :; 0:1g

� equal values take same rank
f1;2;2;2; : : :g

� number ranks consecutively
f1; 2; 2; 2;3; : : :g

Other rank numbering techniques resulted
in skewed output. Competition style rank-
ing, which counts equal values equally, but
orders subsequent values di�erently, disadvan-
tages arcs to nodes with many in-arcs. Given
the same sample values from the above, the

boldface value in the list here shows where this
ranking di�ers: f1; 2; 2; 2;5; 6; : : :g. Also, com-
puting rank as a fraction of the total number
of ranks: f1=n; 2=n; : : :;n=ng favors arcs to
nodes with a larger number of distinct ranks.

The ArcRank algorithm is more space in-
tensive than PageRank, because it is arc ori-
ented, but is fast and easily made into a disk
based version. It essentially requires two pas-
ses through the data, and storage for twice
the number of arcs. In the course of devel-
oping ArcRank, we derived a further extension
to PageRank. The idea is to vary according
to the arc importance ratio the amount of a
source node's rank transfered to the targets.
Tuning this optimization properly strengthens
strong relationships, weakens less important
ones. The additional cost is minimal, and re-
quires ranking arcs and summing ranks per
node, before pushing value across arcs.

3.2 The Webster's Repository

The repository we have built [12] has a very
general structure, and it is de�ned by usage
alone. There are no preimposed limitations,
based on grammatical models, as to how terms
relate. As it is very general, the structure also
sidesteps problems of parsing the part of speech
for each term and handling general negation.
This repository is the only one which does not
exclude stop words, and as a result we are able
to �nd that stop words most strongly relate to
each other. On the down side, the type of rela-
tionship expressed in the repository is not al-
ways self evident, especially since many de�ni-
tions and terms are now obsolete. Also, the ac-
curacy of the ArkRank measure increases with
the amount of data, and much of the dictio-
nary contains very sparse de�nitions. Due to
this sparseness we often �nd that ArcRank will
promote arcs to lower ranked targets. Also,
misleadingly, the sparseness of data makes a
simple metric of ranking sources by the paucity
of arcs work well, when it would otherwise fail.



3.3 Comparison to Other Systems

MindNet is not publicly available, but its scale
is 159,000 head words and 713,000 relation-
ships between head words. Its development
began in 1992, and it supports 24 di�erent re-
lationships between terms. It appears that it
su�ers from problems, both in terms of accu-
racy and completeness of extraction.

WordNet has been in development since
1990, and its design has been elaborated since
1986. Its current revision, WordNet 1.6 was
released in 1998, and includes four principal
data �les, and a number of executables to aid
in searching and displaying the data. Of the
existing electronic lexical tools WordNet is the
one that most closely resembles the Webster's
repository.

The relationships WordNet de�nes between
terms are more precise, as they were manually
entered, however there are necessarily fewer
of them, and they are far from exhaustive.
Also, since the design of WordNet long pre-
ceded its implementation, arti�cial concepts,
such as non-existant words, and arti�cial cat-
egorizations, , such as non-conforming adjec-
tives, were introduced when the repository was
built. These constructs are a valid ad hoc ap-
proach to make the terms conform to the de-
sign, but they do not arise out of the usage of
the language. WordNet carefully distinguishes
between senses of a term, and separates a term
into multiple entries when it may be used as
di�erent parts of speech, i.e., to run vs. a com-
puter run vs. a run salmon. The Webster's
repository only distinguishes senses of a term
based on usage, not on grammar. Another sig-
ni�cant di�erence between the two structures
is that the data in WordNet is separated by
lexical categories, whereas theWebster's repos-
itory allows any relationship between terms to
exist. Table 3 makes some simple numerical
comparisons between the two systems.

Having compared the repositories numeri-
cally, it is necessary to illustrate with an ex-
ample what the Webster's repository provides.
Speci�cally, it relates terms without de�ning
the type of relationship, just the importance

of the relationship. The following section gives
an example of terms relating to transportation.

4 Word Relationships

In this section we examine some subgraphs
that emerge from the repository data after ap-
plying the ArcRank measure. For lack of space
we can not cover the full array of relationships
present in the dictionary, which extend even to
stop words for the other repositories.

4.1 Browsing the Webster's Reposi-
tory

It is instructive to browse through the reposi-
tory to get an idea of how it organizes the dic-
tionary terms. The example below is prompted
by an interest in developing a transportation
ontology to support logistics applications. We
start at the termTransport as shown below in
Figure 1. The general form of graphs generated
using the repository, such as Figure 5, frame
a term by terms used in its de�nition above
and terms that use it in their de�nition be-
low. These terms are placed from left to right
in order of their ArcRank measure. No more
than the two dozen most signi�cant associated
terms are displayed: the label for the central
term contains a count of incoming and outgo-
ing arcs of the form <outgoing, incoming>. In
addition to the ArcRank measure on arcs, each
term has an associated PageRank value. Arcs
and Term borders are dotted when the arc's di-
rection is the reverse of the PageRank ordering
of its end points.

In Figure 1, which has been further pruned
for clarity, we see that the term Convey is
used in transport's de�nition. When we next
examine the term graph for convey, Figure 2,
we �nd transport, along with transported, and
cargo which are also signi�cant for the logistics
ontology. Other terms in the set illustrate the
more general nature of convey as compared to
transport.

Further browsing in the repository takes us
to the graph for Carry in Figure 3. Note how



Table 3: Comparison of Webster Repository and WordNet 1.6
Name Size Comment

Webster 96,800 terms � four man months of e�ort
112,897 distinct words (including variant spellings)

error rates

<1% of original input (spelling errors, etc.)
<0.05% incorrect arcs (hyphenation)
<0.05% incorrect terms (spelling)
0% arti�cial terms

WordNet 1.6 99,642 terms 2 profs, students, volunteers, 8-12 years
173,941 word senses (including numbers, repetition of terms)
66,025 nouns disjoint �les

12,127 verbs
17,915 adj.
3,575 adv.

error rates

�0.1% inappropriate classi�cations
�1-10% arti�cial & repeated terms

Transport <60:43>

Convey

Transporting Transportation Enrapture Enravish Deport Seaworthy Ravish Wagon Boat Sled

Figure 1: Terms Relating to Transport

carry subsumes convey in the sense of trans-
port, and that the term transported is also in
its set of terms. We expect too that Hold ex-
presses a more general notion relating to carry.

Starting from transport in the other direc-
tion, we select Wagon and consider Figure 4.
Wagon is not a specialization of transport, al-
though transport does subsume it: a wagon is
one of a number of forms of transport. We
see that terms such as Car and Vehicle also
shown in Figure 4 represent the generalization
relationship for wagon. Also, terms such as
Charioteer, Caravan and Wheelwright re-
late to wagon without being specializations. bf

Convey <58:271>

Carry

Borne Bring Transported Signification Speaking Synonymous Cargo Carriage Conduct Chariot Transport

Figure 2: Convey Generalizes Transport

Locomotive is however a specialization, and we
next consider the graph in Figure 5.

The graph for locomotive illustrates a spec-
trum of relationships between terms, some of
which are altogether unexpected, such as loco-
motive's relationship to the term Appendix.
A glance at the de�nition of locomotive reveals
that a reference to an illustration in the ap-
pendix of the dictionary appears inappropri-
ately in the de�nition �eld of the term. The
other associated terms all respect some sub-
suming or entailment relationship to locomo-
tive.

Having traveled through a very small sam-



Carry <145:509>

Hold

Convey Behave Conduct Borne Carriage Transact Warfare Transported Correspondent Deport Performance

Figure 3: Carry Subsumes Convey

Wagon <41:84>

Freight Car Merchandise Transport Vehicle

Wagonful Charioteer Hinder Park Fore Democrat Van Locomotive Caravan Wheelwright

Figure 4: Wagon as a Means of Transport

Locomotive <46:57>

Propel Boiler Steam_Engine Appendix Wagon Passenger Carriage Wheel Engine Car Steam

Extremity Equipment Steamer Gearing Wood Driver Turntable Union Smokestack Ambulacra Cab

Figure 5: Locomotive Specializes Wagon

ple of the structure of the repository, it be-
comes clear that the ordering itself is not suf-

�cient to automatically extract the signi�cant
terms relating to a given term. The algorithm
to achieve this is the basis for the application
we are building on top of the repository, and
discussed in the following section. As it turns
out the rankings provided by PageRank and
ArcRank enable an e�cient extraction proce-
dure to maintain structure that is con�rmed
by relationships with other terms.

5 Applications

In this section we discuss applications of these
new algorithms, and current directions of our
research.

5.1 Relation Extraction

Having a repository with rank relationships be-
tween terms, it becomes possible to extract
groups of related terms based on the strengths
of their relationships. In particular, we are in-
terested in extracting three relationships: sub-
suming, specializing and kinship. The kin-
ship relationship is a similarity relationship
broader than synonymy. We are able to achieve
this extraction using a new iterative algorithm,
based on the Pattern/Relation extraction algo-
rithm [13], as follows in Table 4.

Table 4: Extract Relation
input graph with ArcRank computed, & seed arc
set, output local hierarchy based on seed arc set

1. Compute set of nodes that contain arcs com-
parable to seed arc set

2. Threshold them according to ArcRank value

3. Extend seed arc set, when nodes contain fur-
ther commonality

4. If node set increased in size repeat from 1.

The output of the algorithm computes a set
of terms that are related by the strength of
the associations in the arcs that they contain.
These associations correspond to local hierar-
chies of subsuming and specializing relation-
ships, and the set of terms are related by a



kinship relationship. The algorithm is natu-
rally self-limiting via the thresholds.

This approach allows us to distinguish senses
of terms when they engender di�erent struc-
tures according to the algorithm. Indeed, the
senses of a word such as hard, are distinguished
by the choice of association with tough and se-

vere. Also, ranking the di�erent senses of a
term by the strength of its associations with
other terms allows us to uncover the principal
senses of a term.

We are currently investigating the utility of
the ArcRank algorithm for traditional docu-
ment classi�cation applications, as well as to
rank the association rules resulting from data
mining queries. We are also using the results
of the relation extraction algorithm to aid in
the resolution of semantic heterogeneity in our
ontology algebra research.

6 Conclusion

In this paper we have presented algorithms for
ranking relationships represented in a graph
structure. We have applied these algorithms
to a graph extracted from an on-line dictio-
nary to uncover the strongest relationships be-
tween dictionary terms, as given by term us-
age, rather than grammatical categorization.
We consider this repository an adjunct, not
a replacement, for handcrafted thesauri, to
aid in the integration of disparate information
sources, by reducing the e�ects of their lexical
heterogeneity.
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