A Call to Regularity

Moshe Y. Vardi*

Rice University

*Joint work with D. Calvanese, G. De Giacomo, and M. Lenzerini
Database Query Languages

• Standard database query languages (e.g., SQL 2.0) are essentially 1st-order.

• Aho and Ullman, 1978: 1st-order languages are weak; add recursion

• Gallaire and Minker, 1978: add recursion via logic programs

• SQL 3.0, 1999: recursion added

Expressiveness costs money!!!

• 1st-order queries: LOGSPACE

• Recursive queries: PTIME
Datalog

Datalog:

- Function-free logic programs
- Existential, positive fixpoint logic
- Select-project-join-union-recur queries

Example: *Transitive Closure*

\[
Path(x, y) : - Edge(x, y)
\]

\[
Path(x, y) : - Path(x, x), Path(x, y)
\]

Query Containment

Query Optimization: Given Q, find Q' such that:

- $Q \equiv Q'$
- Q' is “easier” than Q

Query Containment: $Q_1 \sqsubseteq Q_2$ if $Q_1(B) \subseteq Q_2(B)$ for all databases B.

Fact: $Q \equiv Q'$ iff $Q \sqsubseteq Q'$ and $Q' \sqsubseteq Q$

Consequence: Query containment is a key database problem.
Query Containment

Other applications:

- query reuse
- query reformulation
- information integration
- cooperative query answering
- integrity checking
- ...

Consequence: Query containment is a fundamental database problem.
Decidability of Query Containment

- **SQL**: undecidable
 - Folk Theorem
 - Poor theory and practice of optimization

- **SPJU**: decidable
 - Rich theory and practice of optimization

- **Datalog**: undecidable
 - Shmueli–1977
 - Difficult theory and practice of optimization

Unfortunately, most decision problems involving Datalog are undecidable - almost no interesting, well-behaved fragments.
1990s: Back to Binary Relations

WWW:

- Nodes
- Edges
- Labels

Semistructured Data: WWW, SGML documents, library catalogs, XML documents, Meta data,

Formally: \((D, E, \lambda)\)

- \(D\) - nodes
- \(E \subseteq D^2\) - edge
- \(\lambda: E \rightarrow \Lambda^+\) – labels (alt., also node labels)
Path Queries

Active Research Topic: What is the right query language for semistructured data?

Basic Element of all proposals: path queries

- $Q(x, y) : = x \, L \, y$
- L: formal language over labels
- $a \cdot \underline{l_1} \cdots \underline{l_k} \cdot b$
- $Q(a, b)$ holds if $l_1 \cdots l_k \in L$

Example: Regular Path Query

$Q(x, y) : = x \, (\text{Wing} \cdot \text{Part}^+ \cdot \text{Nut}) \, y$
Path-Query Containment

\[Q_1(x, y) : - x \; L_1 \; y \]
\[Q_2(x, y) : - x \; L_2 \; y \]

Language-Theoretic Lemma 1:

\[Q_1 \subseteq Q_2 \iff L_1 \subseteq L_2 \]

Proof: Consider a database

\[a \cdot l_1 \cdots l_k \cdot b \text{ with } l_1 \cdots l_k \in L_1 \]

Corollary: Path-Query Containment is

- undecidable for context-free path queries
- decidable for regular path queries.
Regular Path Queries

Observations:

- A fragment of Transitive-Closure Logic

- A fragment of binary Datalog
 - Concatenation: \[E(x, y) : - E_1(x, z), E_2(z, y) \]
 - Union: \[E(x, y) : - E_1(x, y) \]
 \[E(x, y) : - E_1(x, y) \]
 - Transitive Closure: \[P(x, y) : - E(x, z) \]
 \[P(x, y) : - E(x, z), E(z, y) \]

Consequence:

- Data complexity: \textbf{NLOGSPACE}

- Expression complexity: \textbf{PTIME}

Containment: PSPACE-complete, via nondeterministic automata (Stockmeyer, 1973).
Two-Way RPQs

Extended Alphabet: \(\Lambda^- = \{ a^- : a \in \Lambda^+ \} \)
\[\Lambda = \Lambda^+ \cup \Lambda^- \]

Inverse Roles:

\(Part(x, y) \): \(y \) part of \(x \)
\(Part^-(x, y) \): \(x \) part of \(y \)

Example: Step Siblings

\(Q(x, y) : - \)
\[x \quad [(father^- \cdot father) + (mother^- \cdot mother)]^+ \quad y \]

Containment: Two-way nondeterministic automata

- Hopcroft and Ullman: 2DFA
- Hopcroft, Motwani and Ullman: ???
Language Containment – Upper Bound

Lemma: \(L(E_1) \subseteq L(E_2) \) iff \(L(E_1) - L(E_2) \) = \(\emptyset \)

Algorithm for checking whether \(L(E_1) \subseteq L(E_2) \):

1. Construct NFAs \(A_i \) such that \(L(A_i) = L(E_i) \) – *linear blow-up*.

2. Construct \(\overline{A_2} \) such that \(L(\overline{A_2}) = \Sigma^* - L(A_2) \) – *exponential blow-up*.

3. Construct \(A = A_1 \times \overline{A_2} \) such that \(L(A) = L(E_1) - L(E_2) \) – *quadratic blow-up*.

4. Check if there is a path from start state to final state in \(A \) – *NLOGSPACE*.

Bottom Line: \(\text{PSPACE} \)
2NFA

\[A = (\Sigma, S, S_0, \rho, F) \]

- \(\Sigma \) – finite alphabet
- \(S \) – finite state set
- \(S_0 \subseteq S \) – initial states
- \(F \subseteq S \) – final states
- \(\rho : S \times \Sigma \rightarrow 2^{S \times \{-1,0,+1\}} \) – transition function

Theorem: Rabin&Scott, Shepherdson, 1959

2NFA \(\equiv \) 1NFA
2RPQ Containment

Difficulties:

• 2NFA \rightarrow 1NFA: exponential blow-up

 – **Consequence:** Doubly exponential complementation

• Difference between query and language containment

 – $Q_1(x, y) : - x \text{ Parent } y$
 – $Q_2(x, y) : - x \text{ Parent } \cdot \text{ Parent}^- \cdot \text{ Parent } y$

 – $Q_1 \subseteq Q_2$ but

 $L(\text{Parent}) \not\subseteq L(\text{Parent} \cdot \text{Parent}^- \cdot \text{Parent})$
Back to Basics: 2NFA→1NFA

Theorem: Vardi, 1988

Let $A = (\Sigma, S, S_0, \rho, F)$ be a 2NFA. There is a 1NFA A^c such that

- $L(A^c) = \Sigma^* - L(A)$
- $\|A^c\| \in 2^O(\|A\|)$

Proof: Guess a subset-sequence counterexample

$a_0 \cdots a_{k-1} \notin L(A)$ iff there is a sequence T_0, T_1, \cdots, T_k of subsets of S such that

1. $S_0 \subseteq T_0$ and $T_k \cap F = \emptyset$.
2. If $s \in T_i$ and $(t,+1) \in \rho(s,a_i)$, then $t \in T_{i+1}$, for $0 \leq i < k$.
3. If $s \in T_i$ and $(t,0) \in \rho(s,a_i)$, then $t \in T_i$, for $0 \leq i < k$.
4. If $s \in T_i$ and $(t,-1) \in \rho(s,a_i)$, then $t \in T_{i-1}$, for $0 < i \leq k$.
Foldings

Definition: Let \(u, v \in \Lambda^* \). We say that \(v \) **folds** onto \(u \), denoted \(v \leadsto u \), if \(v \) can be “folded” on \(u \), e.g.,

\[
abb^{−}bc \leadsto abc.
\]

Pictorially,

\[
\xrightarrow{a} \cdot \xrightarrow{b} \cdot \xleftarrow{b} \cdot \xrightarrow{b} \cdot \xrightarrow{c} \leadsto \xrightarrow{a} \cdot \xrightarrow{b} \cdot \xrightarrow{c}.
\]

Definition: Let \(E \) be an RE over \(\Lambda \). Then \(\text{fold}(E) = \{v : v \leadsto u, u \in L(E)\} \).

Language-Theoretic Lemma 2:

Let \(Q_1(x,y) : = x \ E_1 \ y \)
\[
Q_2(x,y) : = x \ E_2 \ y
\]
be 2RPQs. Then \(Q_1 \sqsubseteq Q_2 \) iff \(L(E_1) \subseteq \text{fold}(E_2) \).
2RPQ containment

Theorem: Let E be an RE over Λ. There is a 2NFA \tilde{A}_E such that

1. $L(\tilde{A}_E) = fold(E)$
2. $|\tilde{A}_E| \in O(|E|)$

Containment

$Q_1(x, y) : x \notin E_1 y$

$Q_2(x, y) : x \notin E_2 y$

TFAE

1. $Q_1 \sqsubseteq Q_2$
2. $L(E_1) \subseteq fold(E_2)$.
3. $L(E_1) \subseteq L(\tilde{A}_E)$.
4. $L(E_1) \cap L(\tilde{A}_E^c) = \emptyset$
5. $L(A_{E_1} \times \tilde{A}_E^c) = \emptyset$

Bottom-line: 2RPQ containment is PSPACE-complete.
View-Based Query Processing 2RPQs

- **Global database**: B over Λ^+
- **Views**: $\{V_1, \ldots, V_n\}$, V_i is a query
- **View extensions**: $\{E_1, \ldots, E_n\}$, $E_i \subseteq V_i(B)$
- **Global query** Q over Λ
- **Local query** over V_1, \ldots, V_n

Query Processing

1. **View-based query answering**: approximate $Q(B)$ using view-extension information.

2. **View-based query rewriting**: approximate global query by a local query based on view definitions

3. **View-based query losslessness**: Compare global query with its view-based approximation.

4. **View-based query containment**: Compare view-based approximations of two global queries.
 Conjunctive Queries

Conjunctive Query: Existential, conjunctive, positive first-order logic, i.e., first-order logic without \forall, \vee, \neg; written as a rule

$Q(x_1, \ldots, x_n) : \equiv R(x_3, y_2, x_4), \ldots, S(x_2, y_3)$

Significance:

- Most common SQL queries (*Select-Project-Join*)
- Core of Datalog

Example:

$Triangle(x, y, z) : \equiv Edge(x, y), Edge(y, z), Edge(z, x)$
Conjunctive Query Containment

Canonical Database B^Q:

- Each variable in Q is a distinct element
- Each subgoal $R(x_3, y_2, x_4)$ of Q gives rise to a tuple $R(x_3, y_2, x_4)$ in B^Q

Fact: (Chandra and Merlin, 1977)

For conjunctive queries Q_1 and Q_2, TFAE:

- The containment $Q_1 \subseteq Q_2$ holds
- There is a homomorphism $h : B^{Q_2} \rightarrow B^{Q_1}$ that is the identity on distinguished variables.
Conjunctive 2RPQ

\textbf{C2RPQ}: Core of all semistructured query languages

\[Q(x_1, \ldots, x_n) : = y_1 E_1 z_1, \ldots, y_m E_m z_m \]

\begin{itemize}
 \item \(E_i \) – 2RPQ
\end{itemize}

\textbf{Intuition:}

\begin{itemize}
 \item C2RPQs are obtained from CQ by replacing atoms with REs over \(\Lambda \).
 \item C2RPQs are Select-Project- “Regular Join” queries.
\end{itemize}

\textbf{Example:}

\[Q(x, y) : = z (Wing \cdot Part^+ \cdot Nut) x, \]
\[z (Wing \cdot Part^+ \cdot Nut) y \]
C2RPQ Containment

Difficulty: Earlier techniques do not apply

- No canonical database
- No language-theoretic lemma

Solution: Combine and extend earlier ideas

- Infinite family of canonical databases
 - Each variable in Q is a distinct element
 - Each subgoal $y_iE_i\tilde{z}_i$ of Q is replaced by a simple path labeled by a word in $L(E_i)$.

- Represent canonical databases as words over a larger alphabet

- Develop automata-theoretic characterization of C2RPQ containment.

Bottom-line: C2RPQ containment is EXPSPACE-complete.
In Conclusion

Regular queries:

- A rich but well-behaved fragment of Datalog
- Of special interest for semistructured data
- Beautiful application of classical formal-language theory
- Novel theory of regular paths in labeled graphs

Research Question: What is the ultimate class of regular queries?

- $RPQs$
- $2RPQs$
- $C2RPQs$
- $UC2RPQs$
- ...