Open Source Voting
Arthur M. Keller, Ph.D.
David Mertz, Ph.D.

Outline
- Concept
- Fully Disclosed Voting Systems
- Open Source Voting Systems
- Existing Open Source Voting Systems
- Open Source Is Not Enough
- Barriers to Open Voting
- What’s Wrong with DRE Voter-Verifiable Audit Trail
- New System Ideas
- Conclusion
- What You Can Do
Concept

- Secret Ballots Tallied in Public
- *incompatible with*
- Voting Machines and Tabulators
- whose inner workings are Trade Secrets

Concept

- **Wholesale Fraud versus Retail Fraud**
 - *Long and ignoble history of ballot tampering*
 - A ballot box contains *hundreds* of potentially vulnerable votes
 - A DRE voting system affects *millions* of potentially vulnerable votes
Concept

- **Computer + Human = Better than Just Human**
 - Computer voting systems do not substitute for human procedures, but enhance the capability of people to conduct fair elections
 - Under the right arrangements, corrupt officials are unable to corrupt elections
 - The nature(s) of trust

Fully Disclosed Voting Systems

- Part of making the entire voting process open to full inspection by the public
 - Inventory of components
 - Full source code (except true COTS)
 - Object code images
 - Checksums of object code images
 - Hardware, Software, System Specifications
 - Documentation
 - Internal and external document formats and samples
 - Hardware dependencies, specifications, and requirements
 - For COTS: specifications, requirements, uses, version numbers, dates of manufacture
 - Feature checklists
 - License(s)
 - Reports on non-internal tests
 - Procurement contracts
Open Source Voting Systems

- Increases security and reliability
 - Often secrecy of existing systems is to avoid embarrassment
 - Open source systems are designed to be secure without secrecy
 - “Security by obscurity” is not true security
 - Many eyes can find bugs, errors, or fraud
 - Open source systems (e.g., Linux, Apache) often more secure than comparable secret source systems (e.g., Windows, IIS)

- Differences (compared with other Open Source applications)
 - Special purpose application
 - Difficulty in recruiting volunteers
 - Security needed in changing source code
 - Hard to finance
 - Freedom to test, experiment, and analyze

Existing Open Source Voting Systems

- OVC Prototype System
 - Described last year
 - Demonstrated in 2004
 - Advanced the debate about voting systems
 - Not a production quality system

- Berkeley research project (Yee, Wagner, et. al)
 - Demonstrated in 2006
 - Similar in both features and limitations to OVC Prototype

- Open Voting Solutions
 - A full, production-quality open source voting system
 - Awaiting certification (an expensive process)
 - Derived from OASIS EML open source voting tools and components

- Non-US Systems
 - Australian Capital Territory system
New Open Source Voting Systems
VoComp 2007–Univ. Voting Systems Competition

- **Punchscan**
 - End-to-end verified system with encryption
 - Two-part ballot with receipt
 - Cannot manually recount
 - First place at VoComp 2007

- **Prêt à Voter**
 - End-to-end verified system with encryption
 - Two-part ballot with receipt
 - Cannot manually recount
 - Supports Ranked Preference Voting (such as IRV and STV)
 - Second place at VoComp 2007

- **Prime III**
 - DRE with video backup

- **Voting Ducks**
 - Coercion-free Verifiable Internet Voting
 - Uses credentials mailed and submitted by cell phone

Open Source Is Not Enough

- **Other parts of voting process must also be disclosed**
 - Adequate audits
 - Paper ballots (whether hand marked or machine marked or printed)
 - Public right of access and public right to observe entire process
 - Timely disclosure to enable recounts and contesting results
 - Electronic disclosure in any medium in which the records are readily available
 - Electronic disclosure in any format to which data is readily convertible with the data custodian’s existing software
 - Usable format (e.g., not fragmented)
 - Disclosure costs only actual cost of materials (not labor)
Barriers to Open Source Voting

- High cost of system certification
- Entrenched relationships with existing vendors
- Experience of existing vendors
 - Trust by election officials
- Limited market
- Risk of insertion of fraudulent code
 - Problem with pure volunteer development
- Trust by elections officials at odds with trust by the voting public
 - Elections officials motivations are different
 - Most elections departments are small and understaffed

What’s Wrong with DRE

Voter-Verified Audit Trail

- Helps ensure electronic ballot image is correct.
- Useful for recounts.
- Useful for audits (if and when they are done!)
- Limited accessibility.
- If not machine readable and tallyable, will be effectively used only when legally required.
- Reel-to-reel approach compromises voting privacy by maintaining order of ballots.
- ATM-style roll hard to count by machine.
- Use of airline-style cards could solve these problems by using known reliable printers.
- Better: Voter Verified Paper Ballots directly counted for each election.
New System Ideas

• Hand-marked optical scan paper ballots
• Electronic Ballot Printer for accessibility
 - Audio or Video interface
 - Prints an entire optical scan paper ballot compatible
 - with hand-marked ones
• Precinct-count optical scanner and voter ballot verifier
 - Scans ballot (and saves image)
 - Examines image to determine location of marks
 - Interprets mark locations to create an Electronic Ballot Record
 - Displays (or speaks) ballot choices to voter
 - Voter verifies choices or ejects paper ballot for correction
 - If voter verifies ballot is read correctly, non-sequential serial
 number printed on ballot and written on images
• Scanner totals posted at precinct and available from web
• Ballot images available from precinct on CD-R
 - In random order by serial number
• Enables ballot-by-ballot auditing
• Let’s change the debate, again

New System Ideas (continued)

• Publish images of all ballots on CD-R or DVD-R
 ✓ By batch (e.g., by precinct (or scanner) for “regular” ballots)
 ✓ Each ballot image accompanied by corresponding Electronic
 Ballot Record
 ✓ With vote tallies for each batch
 ✓ Enables ballot-by-ballot auditing
 ✓ Can be matched with overall vote totals (and batch totals)
 ✓ Can be matched with precinct tallies posted at close of voting
 ✓ Allows complete hand-counting by the public
 ✓ Privacy issues with stray marks, problem reduced by electronic
 ballot printers
 ✓ Allows third-party vote auditing and tallying software
 ✓ Good opportunity for open source, volunteer contributed code
Conclusion

- Give election officials more choices.
- Enable best-of-breed voting systems.
- Enable competition in services and follow-on support.
- Build open source voting systems vendors can adopt.
- Cheaper, more reliable and secure, auditable, and more trustworthy.
- Privacy should be added to evaluation standards along with reliability, security, and trustworthiness.

What You Can Do

- Current legislative status: HR-811; California FOSS Voting Resolution
- For more information, see papers and talks at http://infolab.stanford.edu/pub/keller and click on “Electronic Voting.”
- Contact your election officials (county, Secretary of State).
- Contact your elected officials (federal, state, and county).
- Help with new prototype system (new ideas section).