
Evaluating GUESS and Non-Forwarding Peer-to-Peer Search

Beverly Yang Patrick Vinograd Hector Garcia-Molina
fbyang, patrickv, hectorg@cs.stanford.edu

Computer Science Department, Stanford University

Abstract

Current search techniques over unstructured peer-to-
peer networks rely on intelligent forwarding-based tech-
niques to propagate queries to other peers in the network.
Forwarding techniques are attractive because they typi-
cally require little state and offer robustness to peer fail-
ures; however they have inherent performance drawbacks
due to the overhead of forwarding and lack of central con-
trol. In this paper, we study GUESS, a non-forwarding
search mechanism, as a viable alternative to currently pop-
ular forwarding-based mechanisms. We show how non-
forwarding mechanisms can be over an order of magni-
tude more efficient than forwarding mechanisms; however,
they must be deployed with care, as a naive implementa-
tion can result in highly suboptimal performance, and make
them susceptible to hotspots and misbehaving peers.

1. Introduction

Peer-to-peer systems have recently become a popular
medium through which to share huge amounts of data. Be-
cause P2P systems distribute the main costs of sharing data
– disk space for storing files and bandwidth for transferring
them – across the peers in the network, they have been able
to scale without the need for powerful, expensive servers.
For example, as of May 2003 the KaZaA [11] file-sharing
system reported over 4.5 million users sharing a total of 7
petabytes of data.

The key to the usability of a data-sharing peer-to-peer
system is the ability to search for and retrieve data effi-
ciently. The best way to search in a given system depends
on the needs of the application. For example, DHT-based
search techniques (e.g., [16, 12, 13]) are well-suited for
file systems or archival systems focused on availability, be-
cause they guarantee location of content if it exists, within
a bounded number of hops. To achieve these properties,
these techniques tightly control both the placement of data
among peers and the topology of the network, and cur-
rently only support search by identifier. In contrast, other
mechanisms, such as Gnutella [9], are designed for more
flexible applications with richer queries, and meant for a
wide range of users from autonomous organizations. These

search techniques must therefore operate under a different
set of constraints than techniques developed for persistent
storage utilities, such as providing greater respect to the au-
tonomy of individual peers.

We are interested in studying the search problem for
these “flexible” applications because they reflect the charac-
teristics of the most widely used systems in practice. Most
of the research in this area has focused onforwarding-based
techniques, where a query message is forwarded between
peers in the overlay until some stopping criterion is met.
Different refinements of forwarding-based techniques have
been studied, such as arranging good topologies for the
overlay [4, 6], intelligent forwarding of messages within the
overlay [19, 5, 17, 14], the use of lightweight indices, data
replication [3], and many combinations of the above [2].

Despite the success of the above research in show-
ing how forwarding-based techniques can be effec-
tive, some of the results also raise the question of
whether message forwarding is truly necessary. For ex-
ample, message-forwarding makes it difficult to con-
trol how many peers receive the query message, and which
peers receive it, since there is no centralized point of con-
trol to monitor and guide the messages. However, ref-
erences [5, 19] show that incremental forwarding of
query messages and intelligent peer selection greatly im-
proves search performance without affecting quality of
results.

In this paper, we wish to investigate a new type of search
architecture, in which messages arenot forwarded, and
peers have complete control over who receives its queries
and when. We are currently studying this non-forwarding
architecture in the context of the GUESS [10] protocol, an
under-construction specification that is meant to become the
successor of the widely-used but inefficient Gnutella proto-
col. Under the GUESS protocol, peers directly probe each
other with their own query messages, rather than relying on
other peers to forward the message.

However, the GUESS protocol is being designed with-
out a good understanding of the issues and necessary strate-
gies to make it work. For example, when processing a query,
in what order should peers be probed? The solution to this
”peer selection” problem must balance efficiency of the
query with load-balancing among the peers. Also, if mes-
sages are not forwarded, then a peer must know of many

other peers (rather than just a handful of neighbors) in or-
der to successfully find answers to its queries. How should
this large state be built up and maintained? Practical prob-
lems not directly related to search performance must also be
addressed; for example, since peers no longer rely on other
peers to forward their queries, it is much easier for peers to
abuse the system for personal gain. How can we detect and
prevent selfish behavior? We are currently investigating so-
lutions to these and other issues to make GUESS a viable
alternative to other proven P2P search protocols.

We note that the non-forwarding concept has also been
proposed for one-hop lookup queries in DHTs [1]. Like [1],
the purpose of GUESS is to reduce the overhead of mes-
sage forwarding; however, because GUESS allows “flexi-
ble” search over loosely structured networks, the protocol
and its underlying issues (e.g., how to maintain state, how
to select peers to query, etc.) are very different.

In this paper, our goals are to promote the con-
cept of a non-forwarding search mechanism for flexible
search, understand what the tradeoffs are compared to ex-
isting forwarding-based techniques, and investigate how the
GUESS non-forwarding protocol can be optimized. In par-
ticular, our contributions are as follows:
� We present an overview of the GUESS protocol (Sec-

tion 2), based on the specification written by the Gnutella
Development Forum [10].

� We identify the importance ofpoliciesin the performance
of a non-forwarding protocol, and introduce several poli-
cies that are feasible to implement in a real system, and
that might accomplish reasonable goals such as fairness,
freshness, efficiency of search, etc.

� Using simulations, we demonstrate how GUESS, if im-
plemented in a straightforward way, can have serious per-
formance problems. For instance, we show how careful
choice of policy can improve performance dramatically
(Section 6.2), but that a naive choice can result in a mech-
anism that is unfair (Section 6.3), and not robust (Sec-
tion 6.4).

2. GUESS Protocol

In this section we describe the GUESS protocol for
querying and state maintenance. For more details, please re-
fer to the original specification [10]. Some of the informa-
tion in this section is not part of the original protocol (e.g.,
the format of a cache entry), but are implementation details
added for clarity.

2.1. Basic Architecture

Peers running the GUESS protocol will maintain two
caches, or lists of pointers (IP addresses) to other peers: a
link cache, and aquery cache. The link cache is analogous
to a peer’s neighbor list in Gnutella; all peers appearing in
the link cache of a peerP can be consideredP ’s neigh-
bors. Rather than keeping an open TCP connection with

Figure 1: Illustration of a small GUESS network. Note that
peer A points to peer C, but C does not point back to A; peer B
has one entry pointing to a non-existing peer. Although neigh-
bor pointers do not actually represent open, active connec-
tions between peers, they still form a “conceptual” overlay net-
work, as illustrated in Figure 2

Figure 2: Conceptual overlay representation of the GUESS
network in Figure 1

each neighbor, however,P will communicate with neigh-
bors via UDP. Hence, the “neighbor” relationship is one
way: if Q appears inP ’s link cache,P might not appear
in Q’s link cache. Furthermore, because the UDP protocol
does not maintain an active connection between two hosts,
it is possible for a peer’s neighbor to die without the peer’s
knowledge. We discuss the issue of maintaining neighbor
pointers in Section 2.2. Please refer to Figure 1 for an illus-
tration of a GUESS network.

Thequery cacheis simply a “scratch space” to temporar-
ily hold large number of pointers to other peers in order to
improve query performance. We discuss the use of the query
cache further in Section 2.3.

An entry in the link or query cache, essentially a
“pointer” to some peerQ, has the following format:

fIP address ofQ;TS;NumFiles;NumResg (1)

TheTS field holds the timestamp of the last interaction with
peerQ. WhenP interacts withQ, regardless of which party
initiated the interaction,P will update theTS field in its
cache entry forQ, if such an entry exists. The NumFiles
field holds the number of files being shared byQ. This field
is set byQ when it first “introduces” itself to the network,
and is passed on as cache entries are shared (introduction
and cache entry sharing are discussed in Section 2.2). Sim-
ilarly, the NumRes field holds the number of results last re-
turned byQ. Each time peerP sends a query to peerQ,

it resets the value of NumRes according toQ’s response to
that query.

2.2. Maintaining State

Because peers in P2P systems typically have short life-
times [15], peers must actively make sure the entries in
their link cache are fresh. Otherwise, over time a peer’s link
cache will accumulate the addresses of many dead peers,
which can result in poor query performance for that peer,
and fragmentation of the “conceptual overlay.”

A peer maintains its link cache by periodically select-
ing an entry and sending aPingmessage to the neighbor. If
the neighbor does not respond, the peer will evict this en-
try from its cache. If the neighbor does respond, then the
peer will update theTS field of the cache entry. Note that
given a fixed effort from the peer to maintain its link cache,
the rate at which a given cache entry is pinged is inversely
proportional to the size of the cache. Therefore it is impor-
tant that the cache not be too large; otherwise, it cannot be
properly maintained.

When a peer receives a Ping message, it will respond
with a Pong message. A Pong message contains a small
number of IP addresses selected from the peer’s own link
cache. The purpose of Pong messages is to allow peers to
sharecache entries with each other. Sharing entries helps
peers discover new live, productive peers to place in their
cache. When a peer receives a Pong message, it will de-
cide whether to add some or all of the entries to its link
cache, depending on the cache replacement policy in use. If
the peer does decide to place an entry from the Pong mes-
sage into its own cache, it does not update any of the fields
(i.e.,TS, NumFiles, or NumRes).

When a new peer first joins the network, it does not ap-
pear in any other peers’ link caches. Anintroduction pro-
tocol is needed to bring the IP address of new peers into
the link caches of existing peers. For our purposes, we as-
sume that when a peerP initiates an interaction with peerQ
by sending either a Ping or Query message, thenQ will add
P to its cache with some probabilityp. Note that it is im-
portant thatp < 1; otherwise it would be very easy for ma-
licious peers to infiltrate the caches of many good peers (see
Section 6.4 for a discussion of “cache poisoning”). A new
peer will therefore be added to existing peers’ caches with
some probability as soon as it initiates a query or ping. Once
the new peer appears in other peers’ caches, it can be circu-
lated even further via Pong messages.

2.3. Query Propagation

The essential characteristic of GUESS is that Query mes-
sages are not propagated via flooding-based broadcast. In-
stead, a GUESS peer simply iterates through the entries in
its link cache, and performs a unicast query, orprobe, to the
target peer. A peer should probe only as many other peers as
necessary to obtain a sufficient number of results. Also, the

GUESS protocol specifies that query happens in a strictly
serial manner; after sending a probe, a peer must either re-
ceive the reply or wait for atimeout period, before it may
probe the next neighbor.1

In some cases, a querying peer must be able to probe a
large number of peers to receive satisfactory results. How-
ever, the number of addresses that a peer can actively keep
track of is limited by the size of the link cache. As we dis-
cussed in the previous section, the link cache must be rela-
tively small if we are to maintain it properly.

To counter this problem, when a peer is probed, it re-
turns a Pong message in addition to any results to the query
it may find. Then, the querying peer places the entries from
this Pong message in itsquery cache, which is a tempo-
rary cache of (theoretically) unbounded size. Entries in the
query cache have the same format as link cache entries. The
querying peer may probe peers from either its link cache
or its query cache. In this manner, a peer is able to probe
a much larger number of peers than it can maintain in its
link cache. Entries in the query cache are not maintained
after the query is completed, otherwise, maintenance over-
head would be too high. However, qualifying entries may
be inserted into the link cache, depending on the cache re-
placement policy in use.

3. GUESS vs. Gnutella

The Gnutella network, which uses a forwarding-based
search mechanism, probably provides the nearest data point
in terms of understanding the operation and intended use of
GUESS. Here we touch on some of the high-level points of
comparison between these protocols, as a generic compari-
son of forwarding versus non-forwarding techniques (as op-
posed to exact protocol details). A more detailed discussion
of these issues can be found in our extended report [20].

Query Performance: In Gnutella, the number and iden-
tity of peers that a query reaches is largely fixed, determined
by the flooding query mechanism and the location of a peer
within the overlay network. In GUESS, on the other hand,
a peer has control over the order in which it probes peers;
furthermore, it can also decide how many peers to probe,
matching the extent of the query to how hard the file is to
find. These two decisions can have a great effect on query
efficiency; we examine the effect of both of these decisions
in Section 6.2. One drawback to such freedom is the pos-
sibility of hotspots, where many peers all try to probe the
same productive peer, exceeding that peer’s capacity. We
examine this issue further in Section 6.3. The tradeoff of
probing nodes in a serial manner is poor response time; pos-
sible solutions include introducing some parallelism, or ad-
justing the probe rate adaptively according to how many re-
sults are found.

1 Parallel probes are also possible, although the current GUESS specifi-
cation makes no such provisions.

State Maintenance:The state of a Gnutella peer con-
sists of a small number of active network connections to
the peer’s neighbors. The overlay provides a highly consis-
tent structure even though a given peer might only be aware
of a small part of that structure. In GUESS, however, each
peer must maintain pointers in a large link cache; while the
size of such state is well within available memory limits,
maintaining the cache over time can require a lot of net-
work bandwidth. The GUESS network is also much less
consistent; peers may not have mutual knowledge of one an-
other since link cache pointers are one-way. Similarly, when
a peer joins or leaves the network, there is no explicit noti-
fication to other peers. Instead, other peers must be made
aware of the change by some introduction mechanism, or
by wasting a probe trying to contact a dead peer, respec-
tively.

Security: There are two types of misbehavior we con-
sider with GUESS:maliciouspeers who try to make the sys-
tem unusable, andselfishpeers who try to “game” the sys-
tem in their favor. Gnutella is fairly robust to selfish peers
because once a peer has sent out its query, it is dependent on
other peers to propagate it. GUESS peers, on the other hand,
can easily probe many peers at a time, which improves re-
sponse time while imposing a higher load than necessary on
the system.

As for malicious behavior, Gnutella is vulnerable to De-
nial of Service (DoS) attacks, by virtue of the traffic ampli-
fication effect of the broadcast query mechanism [7]. Since
GUESS does not magnify queries in this way, a GUESS
peer can only cause as much network traffic as it itself is
able to initiate. Fragmentation attacks, which attempt to
fragment the overlay network, are a risk in both Gnutella
[15] and GUESS. In Gnutella, highly-connected peers are
attacked; in GUESS, groups of malicious peers can propa-
gate their identities aggressively into many link caches; if
they then suddenly disappear, the conceptual overlay of the
remaining nodes will become fragmented. The security con-
cerns of GUESS are discussed further in Section 6.4.

4. Policies

We observe that performance of the GUESS protocol de-
pends heavily on thepolicies that determine how entries
in the pong cache are used and maintained. For example,
by constructing a Pong message using entries with the lat-
est timestamps, and evicting entries with the oldest times-
tamps, peers might be able to maximize the number of live
entries in their cache. As another example, by first prob-
ing peers who have a history of providing useful informa-
tion, peers can drastically reduce the total number of probes
needed to answer a query. Hence, any deployment of the
GUESS protocol must first carefully consider which poli-
cies to implement.

There are fivetypesof policies which we must con-
sider:

� QueryProbe – the order in which peers in the link and
query caches are probed for queries

� QueryPong – the preference given to entries when con-
structing a Pong message in response to a Query

� PingProbe – the order in which peers in the link cache
are pinged

� PingPong – the preference given to entries when con-
structing a Pong message in response to a Ping

� CacheReplacement – the order in which peers are
evicted from the link cache

We consider QueryProbe and PingProbe (and QueryPong
and PingPong) separately because a peer might have differ-
ent goals during a query and during a ping. For example,
during a query, a peer may prefer to probe other peers who
are likely to have a file. For a ping, however, a peer may pre-
fer to probe other peers who have many link cache entries,
or are known to be alive.

For each of the policy types discussed above, many poli-
cies could be implemented. For the purposes of our exper-
imentation, we came up with a number of policies that we
felt would be feasible to implement in a real system, and
that might accomplish reasonable goals such as fairness,
freshness, efficiency of search, etc. The policies that we im-
plemented are listed below along with a brief discussion of
the rationale for each policy.

Note that for Cache Replacement, the policy name in-
dicates what peers get evicted from the cache. Therefore,
to get the same intended effect as, say, a Probe policy, we
must reverse the criterion used. For example, to effect a
Most Files Shared goal, we use a Cache Replacement pol-
icy of Least Files Shared, since by evicting those peers
with a small number of files we retain the ones with more
files. Similarly, Most Results becomes Least Results, and
Least/Most Recently Used become Most/Least Recently
Used.

Random (Ran)– selects entries at random. This policy
is used as a baseline for comparison, and is likely to be very
fair in terms of load distribution.

Most Recently Used (MRU)– prioritizes link cache en-
tries with the most recent timestamps. These entries are
most likely to be alive since they have been in contact re-
cently; therefore MRU should waste the least amount of
work in probing dead peers.

Least Recently Used (LRU)– opposite of MRU, priori-
tizing cache entries that have old timestamps. The rationale
behind LRU isfairness; rather than continually querying
the same set of peers, load is spread across peers that have
not been contacted recently. Of course, peers with very old
timestamps are more likely to be dead, resulting in wasted
probes.

Most Files Shared (MFS)– prioritizes entries based on
the number of files they share. The impetus for such a pol-
icy is obvious; peers with many files are more likely to be
able to have files related to the query. A potential down-
side to this policy is that the measure used (files shared) is
global, and so the peers with many files shared are likely to

Name Default Value
NetworkSize 1000 peers
NumDesiredResults 1
LifespanMultiplier 1
Query Rate 9:26 � 10

�3 queries/user/sec
MaxProbesPerSecond 100 probes/sec
PercentBadPeers 0%
BadPongBehavior Dead
QueryProbe Random
QueryPong Random
PingProbe Random
PingPong Random
CacheReplacement Random
PingInterval 30 sec
CacheSize 100 entries
ResetNumResults No
DoBackoff No
PongSize 5 entries
IntroProb .1

Table 1: System and protocol parameters, with default
values

be queried by a large number of peers, making them shoul-
der an unfair amount of work in the network.

Most Results (MR) – similar in nature to Most Files
Shared, prioritizes entries based on the number of good re-
sults that the corresponding peers have returned in the past.
Typically, peers that have been fruitful in the past may be
more likely to be good in the future. MR is less suscepti-
ble to lying than MFS, although often less good at identify-
ing useful peers.

One potential advantage of MR over Most Files Shared
is that MR includes some notion ofpersonalusefulness. A
peer with many files may not have the files that I want; how-
ever, if the queries that I generate are related, then perhaps
a peer that has worked well for me will continue to work
well, regardless of its total number of files. Similarly, MR
might be better than MFS at identifying peers who are actu-
ally capable of servicing queries, which is important when
capacity limits come into play.

5. Experimental Setup

Parameters.We will be comparing differentconfigura-
tionsof the GUESS protocol, where a configuration is de-
fined by a set of system and protocol parameters, shown in
Table 1. System parameters describe the nature of the sys-
tem on which the GUESS protocol is used (e.g., the query
behavior of the users). Protocol parameters then describe
how the GUESS protocol is configured (e.g., the policy used
to order query probes). As we will see in Section 6, differ-
ent protocol parameters result in better performance in dif-
ferent system scenarios. Parameters will be described in fur-
ther detail as they are used later. Unless otherwise specified,
our simulations use the default values shown in these tables.

Note that NetworkSize=1000 is a modest number of
peers, given the scale of the types of system we expect to
use GUESS. In our results section, we show how our re-
sults scale with network size, when appropriate.

Metrics. The main metric of query efficiency is the aver-
age number ofprobes per queryneeded; minimizing probe
traffic is one of the primary goals of the GUESS proto-
col. Of course, such a goal is only reasonable if users re-
ceive results for their queries, hence another key metric is
the proportion of queries that gounsatisfied(i.e., do not
return NumDesiredResults answers). We also exam-
ine the proportion of probes that arewasted; that is, sent to
peers that have already left the network. For each peer, we
also measure the number ofreceivedprobes; comparing the
load across peers help us to gauge fairness as well as effi-
ciency.

Simulation Details. A detailed description of each pa-
rameter and its role in our simulation is provided in [20].
Here, we highlight the most relevant parameters and con-
cepts in our simulation.

The simulation begins withNetworkSize live peers
in the network. As time progresses, peers will die. A large
sample of peer lifetimes in the Gnutella network was mea-
sured in [15]. For our simulations, the lifetime of a peer
is drawn randomly from this sample. In addition, we may
tune these lifespans via theLifespanMultplier pa-
rameter. IfLifespanMultiplier = x, then all values
in the measured distribution of lifespans are multiplied by
x.

When a peer dies, we assume that it never returns to
the system. This assumption is conservative in that it is
the worst-case scenario for cache maintenance; our main-
tenance policies must be shown to be effective even in this
worst case. Also, when a peer dies, a new peer is “born.”
In this way, there are alwaysNetworkSize live peers in
the system. When a peer joins the network, it must popu-
late its link cache. We use therandom friendseeding policy
as described in [8]. Under the random friend policy, we as-
sume that the new peer knows of one other peer, or “friend,”
that is currently alive. The new peer initializes its link cache
by copying the link cache of its friend.

As discussed earlier, theQueryProbe and Query-
Pong policies determine the order in which entries are
probed and included in Pong messages, respectively, dur-
ing a query.PingProbe andPingPong are the analo-
gous policies for pings. When new entries are added to the
cache (e.g., because they were received in a Pong message),
CacheReplacement determines the order in which en-
tries are evicted. Pong messages includePongSize en-
tries. To maintain its cache, each peer sends one ping mes-
sage everyPingInterval seconds.

When a peer is probed, to determine whether it returns
a result for the query, we use the query model developed
in [18]. Though this query model was developed for hybrid
file-sharing systems, it is still applicable to the file-sharing
systems we are studying. The probability of returning a re-
sult depends partially on the number of files owned by that
peer; number of files owned are assigned according to the
distribution of files measured by [15] over Gnutella.

A peer sets a maximum number of probes per second

10
0

10
1

10
2

10
3

10
4

0

50

100

150

200

250

300

350

CacheSize

P
ro

be
s/

Q
ue

ry

NetworkSize=200
NetworkSize=500
NetworkSize=1000
NetworkSize=2000
NetworkSize=5000

Figure 3: Number of probes in-
creases as cache size increases

10
0

10
1

10
2

10
3

10
4

0

0.05

0.1

0.15

0.2

0.25

CacheSize

U
ns

at
is

fa
ct

io
n

NetworkSize=200
NetworkSize=500
NetworkSize=1000
NetworkSize=2000
NetworkSize=5000

Figure 4: Unsatisfaction experi-
ences a minimum at moderate cache
values

10
1

10
2

10
3

0

20

40

60

80

100

120

CacheSize

P

ro
be

s/
Q

ue
ry

Dead
Good

Figure 5: Number of dead probes in-
creases as cache size increases, while
good probes experience a maximum
at moderate cache value

that it is able or willing to handle, according toMax-
ProbesPerSecond . Although different peers may have
different capacities, we assume that in the interest of fair-
ness, all peers set the same load limit. A peer isover-
loadedif the number of probes it must process per second
is greater thanMaxProbesPerSecond . When a peer be-
comes overloaded, it drops queries.

6. Results

In the following section, we present the results of our ex-
periments over a wide range of system and protocol config-
urations. We organize the results into four main categories.
First, we investigate the issue of maintaining the link cache
(Section 6.1) in the face of frequent peer downtimes. We
then study the behavior of policies in various system sce-
narios: in Section 6.2, we study basic performance in the
default usage scenario. We then investigate the fairness of
policies and their ability to perform in the presence of lim-
ited peer capacity (Section 6.3), as well as the robustness of
policies to misbehaving peers (Section 6.4).

6.1. Maintaining the Link Cache

One of the most important issues in maintaining the link
cache is selecting the cache size. Intuitively, very small
cache sizes result in poor performance, because peers do not
have enough “neighbors” to probe. Hence, queries will of-
ten not be satisfied. On the other hand, it is not immediately
clear whether very large cache sizes will result in good per-
formance, because of the effort necessary to maintain the
freshness of the entries.

To investigate the impact of cache size on performance,
Figures 3 and 4 look at query performance as cache size
is varied, over a number of different network sizes ranging
from 200 to 5000 nodes. Due to limitations in our simulator
we do not scale beyond 5000. We study cache sizes rang-
ing from 5 (very small) to the size of the network. To pro-
vide additional “strain” on the system, we setLifespan-

Multiplier to .2, causing peers to come and go more
frequently.

In Figure 3, we see immediately that as the size of the
cache grows, regardless of network size, the number of
probes per satisfied query also grows. A reasonable expla-
nation for this phenomenon immediately comes to mind:
as the size of the cache increases, there are more peers to
probe. Hence, many of the queries that were previously un-
satisfied will now be satisfied, albeit at a higher number of
probes. The consequence of this explanation is that as cache
size increases, the unsatisfaction rate decreases.

Surprisingly, we see in Figure 4 that this explanation
does not hold. As we expected, unsatisfaction is high when
cache size is very small. However, across all network sizes
shown, unsatisfaction experiences a minimum at a moder-
ate cache size, after which point it increases once more. In
other words, very large cache size not only results in more
expensive queries, it also results in lower satisfaction.

To understand this phenomenon, in Figure 5 we take
a closer look at the number of probes required to answer
a query. For clarity, we look only at our default network
size of 1000. The probes are broken down into “good” and
“dead” probes: a “good” probe is a probe sent to a live peer,
while a “dead” probe is sent to a peer that is no longer
online. Good and dead probes are represented in Figure 5
by the white and gray regions, respectively. We see from
Figure 5 that as cache size increases, the number ofdead
probes increases dramatically at first, and then levels off.
The number of good probes, however, doesnot increase.
Hence, although larger cache sizes result in a larger number
of probes, they do not translate to more satisfied queries, be-
cause the additional probes are all useless.

In fact, the number of good probes experiences a maxi-
mum at a cache size of 20. At this maximum, the number of
good probes is almost 30% higher than when cache size is
200. Since the satisfaction of a query depends only on the
number of good probes, we can understand why satisfac-
tion also reaches a maximum at a cache size of 20.

At larger cache sizes, the link cache maintenance effort

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Average Query Cost (probes)

U
ns

at
is

fie
d

qu
er

ie
s

Fixed Extent (Gnutella)

Flexible Extent/Fine
 (GUESS)

Flexible Extent/Coarse
 (Iter. Deep.)

MFS baseline

Figure 6: For a given average query
cost, unsatisfaction rate is lowest with
a fine-grained flexible extent provided
by GUESS

0

20

40

60

80

100

120

140

Ran MRU
LRU

MFS

MR

QueryProbe Policy

N
um

be
r

of
 P

ro
be

s

DeadIPs/Query
Good Probes/Query

Figure 7: Probes/Query for different
QueryProbe policies

0

20

40

60

80

100

120

Ran

MRU

LRU

MFS

MR

QueryPong Policy

N
um

be
r

of
 P

ro
be

s

DeadIPs/Query
Good Probes/Query

Figure 8: Probes/Query for different
QueryPong policies

is “spread too thin” over a large number of entries; hence,
the ratio of live to dead cache entries decreases. As a re-
sult, a larger fraction of probes are dead during query exe-
cution. In addition, because Pong messages contain a sam-
ple of link cache entries, the ratio of live to deadquery cache
entries will also decrease as link cache size increases.

In terms of how to select a cache size, clearly, moder-
ate cache sizes have the best cost/performance tradeoff. In
fact, in Figure 4, we see that a cache size in the range of 20-
70 (range marked by dotted lines) results in best satisfac-
tion – for all network sizes studied, the optimal cache size
does not change with network size. Our experiments show
strong evidence that optimal cache size grows very slowly,
if at all. Hence, even with very large network sizes, a rea-
sonably small cache size is sufficient for good performance.

6.2. Basic Policies

Flexible Extent: First, we highlight the performance
benefits of a completely flexible query extent. Figure 6
shows the tradeoff curve between the average cost of a
query and the unsatisfaction rate for three different search
mechanisms: a fixed-extent mechanism (e.g., Gnutella), a
coarse-grained flexible extent mechanism (e.g., the iterative
deepening [19] approach), and a fine-grained flexible extent
mechanism (e.g., GUESS). With regards to extent, iterative
deepening (shown by a square in Figure 6) is conceptually
similar to GUESS, except that many peers (e.g., hundreds)
are probed in each iteration, instead of just one. The ’o’ and
’x’ mark the points in the figure that represents GUESS, us-
ing the Random baseline policy andQueryPong = MFS,
respectively. Finally, for the fixed-extent mechanism, we
evaluated the rate of unsatisfied queries for all fixed extent
sizes from 1 to 1000, in order to view the tradeoff between
efficiency and quality.

From Figure 6, we can see the enormous performance
gains that a flexible extent allows. For example, GUESS can
achieve an unsatisfaction rate of almost 6% with an average
query cost of 99 probes with the baseline policy, and 8%

unsatisfaction with an average of 17 probes withQuery-
Pong = MFS. In contrast, a fixed extent mechanism such
as Gnutella would require 1000 probes for 6% unsatisfac-
tion, and 540 probes for 8% unsatisfaction – well over an
order of magnitude higher than GUESS. Iterative deepen-
ing is also less efficient than GUESS, given that its control
over extent is coarse-grained; however, we see even limited
control of extent can result in a fairly good balance between
cost and quality.

The reason fixed extent performs so poorly is because
some queries are for popular items while others are for rare
items, and the fixed extent can not adapt to these two ex-
tremes. For many queries that are for popular items, far
more peers receive the query than is necessary to satisfy
the query. However, if the fixed extent is made small, then
the queries for rare items can not be satisfied. Having a flex-
ible extent allows one to probe just as many peers as nec-
essary. In the remainder of this section, we will focus on
the challenges and opportunities afforded by a flexible ex-
tent: response time, and policy selection for efficiency.

Query Efficiency: Here we examine the many options
available for the various policies, with the goal of seeing
which choices for a given policy are the most effective in
the standard usage scenario (i.e. no capacity limits, no ma-
licious behavior). In particular we measure the number of
probes used for queries and the percentage of queries that
go unsatisfied. In terms of the number of probes used for
queries, we distinguish between “useful” probes (those that
get sent to live peers) and “wasted” probes which are sent to
dead peers and therefore have no chance of returning use-
ful information.

To simplify presentation of the results, in the rest of this
section we fix thePingProbe and PingPong policies
at Random so that we can focus on query behavior. Also,
in each of the graphs presented, the unspecified parameters
use the default values in Table 1. In particular, aside from
the policy being varied in the graph, the other policies are
fixed as Random.

Looking at Figures 7, 8, and 9, our immediate obser-

0

20

40

60

80

100

120

Ran

LRU

MRU

LFS

LR

CacheReplacement Policy

N
um

be
r

of
 P

ro
be

s

DeadIPs/Query
Good Probes/Query

Figure 9: Probes/Query for different CacheReplacement poli-
cies

vation is that choosing different policies can have a dra-
matic impact on performance. For example, in Figure 8 we
see that changing theQueryPong policy can reduce cost
(Probes/Query) by a factor of four. Likewise, in Figure 9 we
see that changing theCacheReplacement policy can re-
duce cost by over a factor of five. TheQueryProbe pol-
icy does not appear to make as significant a difference in
performance compared to other policy types; changing the
QueryProbe policy results in at most about a 25% change
in cost. Certainly theQueryProbe policy should be cho-
sen appropriately; however, as a first cut we recommend fo-
cusing attention on the other two policy types.

Another initial observation is that there are some policies
with very serious drawbacks. The most obvious of these is
the MRU policy for CacheReplacement ; in Figure 9,
we see that this policy causes a large number of probes to
dead peers. This follows, since the policy evicts recently-
contacted peers from its link cache, leaving the most stale
entries. It appears that using MRU as a mechanism to en-
force fairness does not result in effective search.

Looking at what does provide effective search, we see
that the MFSQueryPong and LFSCacheReplace-
ment policies are the most efficient (Figure 8 and Figure 9).
In fact, used together, these policies result in query effi-
ciency that is almost an order of magnitude better than if
Random policies were used, thereby highlighting the im-
portance of carefully selecting good policies. The MFS/LFS
policies cause peers to circulate and maintain the identities
of peers who share many files and are therefore more likely
to return results to a query. The results-based policies (MR
and LR) behave similarly, but are not quite as effective, be-
cause the number of results returned is not as accurate an
indicator as number of files shared.

Unsatisfied Queries:Examining Figure 10, we observe
that the proportion of unsatisfied queries is typically in the
range of 6-14 percent. This figure may seem rather high
given that one of the supposed advantages of GUESS is that
it searches more extensively for rare files. This rate is par-
tially an artifact of our simulation parameters; when simu-
lating a network of only 1000 nodes, approximately 6% of
the queries will go unsatisfied even if the entire network is
probed, because some queries are for very rare or nonexis-

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

RanMRU

LRU

MFSMR

QueryPong Policy

U
ns

at
is

fie
d

Q
ue

rie
s

Figure 10: Percentage of queries that are not satisfied, for
different QueryPong policies

tent items. In light of this effective lower bound on the un-
satisfied query rate, we see that policies such as MFS and
Random do quite well.

Response Time:Because each probe is performed se-
quentially, the response time of GUESS is linear in the num-
ber of probes required. Therefore, selecting a good policy is
critical not only for efficiency, but for user experience as
well.

To improve response time, a peer may send outk probes
in parallel. Doing so will only increase the required num-
ber of probes by at mostk � 1, but will decrease response
time by a factor ofk – a good tradeoff for any moderate
value ofk (e.g., 10). For example, whenQueryPong =
MFS, the average number of probes required is 17. If we set
k = 5, and each set of parallel probes is sent out every .2
seconds (according to the GUESS specification [10]), then
the average number of probes is at most 21, meaning aver-
age response time is less than 1 second.

Of course, though average response time may be low,
worst-case response time is still bad. If 1000 probes are re-
quired to satisfy a query, then using the parameters in the
previous example, 50 seconds are required to answer the
query. A more sophisticated solution may adaptively in-
creasek if successive sets of parallel probes are unsuccess-
ful. We leave such a technique to future work.

6.3. Individual Loads

One of the main problems encountered by the original
Gnutella protocol was congestion; therefore, it makes sense
to examine whether GUESS might be susceptible to such
problems as well. While GUESS does not cause queries
to be magnified by a flooding mechanism (as in Gnutella),
there may be other ways in which the limited capacities of
peers come into play. We first investigate how different poli-
cies may lead to a high load for some peers, and then exam-
ine possible ways to remedy such a condition.

Fairness: Figure 11 shows the peers from a simula-
tion run, ranked by number of probes received during their
lifetimes, for different combinations ofQueryProbe and
CacheReplacement policies. The rank is shown on a

10
0

10
1

10
2

10
3

10
4

0

2000

4000

6000

8000

10000

12000

Rank

Lo
ad

 (
P

ro
be

s
R

ec
ei

ve
d)

Random/Random
MFS/LFS
MR/LR
MRU/LRU

Figure 11: Ranked distribution of
load (probes received) for different
combinations of QueryProbe and
CacheReplacement policies

0

5

10

15

20

25

30

50/10/5/1

500 1000 2000 5000
NetworkSize/MaxProbesPerSecond

Good Probes/Query
Refused Probes/Query
DeadIPs/Query

50/10/5/1

50/10/5/1

50/10/5/1

Figure 12: For large networks, lim-
ited capacity leads to more refused
probes

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

MaxProbesPerSecond

U
ns

at
is

fie
d

qu
er

ie
s

NetworkSize=5000
NetworkSize=2000
NetworkSize=1000
NetworkSize=500

Figure 13: Query satisfaction is not
affected by the capacity limits, even
when a significant number of probes
are refused

logarithmic scale so that the highest-loaded peers are vis-
ible. We see that for MFS/LFS, and MR/LR, the load is
weighted heavily to a small number of peers who do most
of the work. On the other hand the curve for the Ran-
dom/Random policy is much more level, meaning that the
load is spread more evenly across all peers.

Despite the fact that we can choose a more fair policy, it
is not clear that we want to. While the load is spread more
evenly with the Random/Random policy, the total number
of probes sent is over 8 times as many as when MFS/LFS
is used. The probes are received in a more fair manner, but
by peers who are unable to satisfy queries. This wastes both
time and bandwidth for the querying peers as well as the
receiving peers. So, fairness may be trumped by other con-
cerns such as overall efficiency. However, this example does
illustrate that some peers may encounter very high loads.
Therefore, we should determine how the system will react
if the capacity of these peers is exceeded.

Capacity Limits: In order to simulate peers having lim-
ited capacities we introduce the parameterMaxProbe-
sPerSecond , representing the maximum number of
probes that a peer can process within a one-second win-
dow. Any probes received beyond this limit will be dropped.
In the following figures, we refer to these dropped probes as
“refused” probes. Although different peers may have dif-
ferent capacities, we assume that in the interest of fairness,
all peers set the same limit.

Under our default scenario, using aNetworkSize of
1000, aCacheSize of 100, and the defaultQueryProbe
policy of Random, limited capacity barely comes into play.
Any value ofMaxProbesPerSecond greater than 1 re-
sults in less than 1 probe per query being refused (and in
most cases, zero refused probes). Even with a capacity of
just 1 probe per second, the number of unsatisfied queries
increases by less than 2 percent. This is a promising sign
that GUESS is resistant to congestion, which is one of the
goals of the protocol.

We can see the effects of a limited capacity more clearly

in larger networks, and in policies that are less fair, such
as MFS and MR. Figure 12 shows the number of probes
per query for different capacities and network sizes, using
the MR policies. For example, the left-most group of bars in
the figure shows the average number of probes per query for
a network of 500 nodes, with capacity decreasing from left
to right. As the network grows, the number of good probes
and probes to dead peers remain pretty steady. However,
the number of refused probes increases with network size.
There are a few nodes that consistently provide good re-
sults and thus reside in many link caches, and they become
overloaded by the large number of peers who select them as
probe recipients.

Despite the increase in refused probes, however, we see
in Figure 13 that query satisfaction is hardly affected at all.
In our experimentation, despite some of the peers becom-
ing overloaded at times, there were enough other peers in
the network that were capable of satisfying queries, and so
satisfaction rates did not decrease. As the network becomes
larger, there are more peers sending probes, but there are
also more peers to service queries, so the network may be
self-sufficient.

The GUESS policy contains an inherent throttling mech-
anism for overloaded peers which helps in the face of lim-
ited capacity. When a peer gets overloaded, and drops the
probes it cannot handle, the probing nodes will then remove
the overloaded peer from their caches (believing it is dead).
By removing an entry from its cache, a peer will will not
propagate the entry in its Pong messages, which in turn re-
duces the number of probes that the overloaded node might
receive in the near future. A nice feature of this mecha-
nism is that in GUESS, the lack of response from one over-
loaded peer does not unduly interfere with the overall query,
whereas in Gnutella, a drop might prevent hundreds of other
potential recipients from seeing the query.

Nevertheless, GUESS cannot get around the fact that
there are only a small number of peers that tend to share
a large number of files. If a popular file is only located at

a few overloaded nodes, many queries will still go unsat-
isfied. Ultimately, having a high degree of content replica-
tion is the best solution for allowing a file sharing network
to scale successfully; it allows many querying peers to lo-
cate content without placing a huge load on any one or any
handful of nodes. In a public trading network like Gnutella,
where it is difficult to require people to provide content, a
better solution might be to provide incentives for sharing
and replicating content.

6.4. Misbehaving Peers

When designing any wide-area P2P system, one must
consider the possibility of malicious peers. The GUESS
protocol is particularly vulnerable to thecache-poisoning
attack, where malicious peers inject IP addresses of dead or
malicious peers into good peers’ caches via corrupt Pong
messages. If cache-poisoning is widespread enough, it can
degrade performance significantly.

In our extended report [20], we study the robustness of
policies against cache poisoning. A policy is consideredro-
bustif its performance does not significantly degrade as the
percentage of malicious peers in the system increases. From
our investigation, we found that when malicious peers do
not collude, the MR policy has the best combination of per-
formance and robustness. Only if a very small percentage
of peers are malicious does MFS outperform MR. When
malicious peers collude, however, MR is no longer robust.
Instead, a more robust policy is MR*, a variation of MR
where peers reset the NumRes field to 0 when an entry is
first added to the cache. Because peers no longer rely on in-
formation provided by other peers, MR* has good robust-
ness, like Random, and it outperforms Random in terms of
number of probes per query and unsatisfaction rate.

Although MR and MFS are not inherently robust to ma-
licious collusions, they can still be practical given an ef-
fective means to detect and react against malicious behav-
ior [8]. For further details on our experiments and a discus-
sion on cache-poisoning, we refer readers to our extended
report [20].

7. Conclusion

In this paper, we promote the concept of non-forwarding
search mechanisms as a viable alternative to popu-
lar forwarding-based mechanisms such as Gnutella.
Non-forwarding mechanisms, exemplified by the GUESS
protocol, can achieve very efficient query performance,
but must be carefully deployed. In particular, in this pa-
per we demonstrate how thepoliciesused to determine the
order of probes, pongs and cache replacement have a dra-
matic effect on performance and robustness. From our ex-
periments, we conclude that the MR policy presents the
best tradeoff between efficiency and robustness, while scal-
ing fairly well with network size. Therefore, our recom-
mendation for a first-generation implementation of GUESS

would be to use the MR policy. In the future, we would like
to further explore how to make the protocol adapt to chang-
ing network conditions, and how to defend against selfish
and malicious peers.

References

[1] R. Rodruigues A. Gupta, B. Liskov. One-hop lookups for
peer-to-peer overlays. InProc. HotOS, May 2003.

[2] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
S. Shenker. Making gnutella-like p2p systems scalable. In
Proc. of SIGCOMM, August 2003.

[3] E. Cohen and S. Shenker. Replication strategies in unstruc-
tured peer-to-peer networks. InProc. SIGCOMM, August
2002.

[4] B. Cooper and H. Garcia-Molina. Ad-hoc, self-supervising
peer-to-peer networks. Technical report, Stanford Univer-
sity, 2003.

[5] A. Crespo and H. Garcia-Molina. Routing indices for peer-
to-peer systems. InProc. of the 28th ICDCS, July 2002.

[6] A. Crespo and H. Garcia-Molina. Semantic overlay net-
works. Technical report, Stanford University, 2002.

[7] N. Daswani and H. Garcia-Molina. Query-flood dos attacks
in gnutella. InACM Conference on Computer and Commu-
nications Security, November 2002.

[8] N. Daswani and H. Garcia-Molina. Pong-cache poisoning in
guess. Technical report, Stanford University, 2003.

[9] Gnutella website. http://www.gnutella.com.
[10] GUESS protocol specification. http://groups.yahoo.com/-

group/thegdf/files/Proposals/GUESS/guesso1.txt.
[11] KaZaA website. http://www.kazaa.com.
[12] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

S. Shenker. A scalable content-addressable network. InProc.
ACM SIGCOMM, August 2001.

[13] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. InProc. Middleware 2001, November 2001.

[14] L. Guo S. Jiang and X. Zhang. Lightflood: an efficient flood-
ing scheme for file search in unstructured peer-to-peer sys-
tems. InProc. of 2003 Intl. Conf. on Parallel Processing.

[15] S. Saroiu, P. Gummadi, and S. Gribble. A measurement
study of peer-to-peer file sharing systems. InProc. of the
Multimedia Computing and Networking, January 2002.

[16] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. InProc. ACM SIGCOMM, August
2001.

[17] D. Tsoumakos and N. Roussopoulos. Adaptive probabilistic
search for peer-to-peer networks. InProc. of the 3rd Conf.
on P2P Computing, September 2003.

[18] B. Yang and H. Garcia-Molina. Comparing hybrid peer-to-
peer systems. InProc. of the 27th Intl. Conf. on Very Large
Databases, September 2001.

[19] B. Yang and H. Garcia-Molina. Improving efficiency of peer-
to-peer search. InProc. of the 28th ICDCS, July 2002.

[20] B. Yang, P. Vinograd, and H. Garcia-Molina. Guess:
Non-forwarding p2p search mechanism. Techni-
cal report, Stanford University, 2003. Available at
http://dbpubs.stanford.edu/pub/2003-73.

