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Abstract

Current search techniques over unstructured peer-to-
peer networks rely on intelligent forwarding-based tech-
niques to propagate queries to other peers in the network.
Forwarding techniques are attractive because they typi-
cally require little state and offer robustness to peer fail-
ures; however they have inherent performance drawbacks
due to the overhead of forwarding and lack of central con-
trol. In this paper, we study GUESS, a non-forwarding
search mechanism, as a viable alternative to currently pop-
ular forwarding-based mechanisms. We show how non-
forwarding mechanisms can be over an order of magni-
tude more efficient than forwarding mechanisms; however,
they must be deployed with care, as a naive implementa-
tion can result in highly suboptimal performance, and make
them susceptible to hotspots and misbehaving peers.

1. Introduction

Peer-to-peer systems have recently become a popular
medium through which to share huge amounts of data. Be-
cause P2P systems distribute the main costs of sharing data
– disk space for storing files and bandwidth for transferring
them – across the peers in the network, they have been able
to scale without the need for powerful, expensive servers.
For example, as of May 2003 the KaZaA [13] file-sharing
system reported over 4.5 million users sharing a total of 7
petabytes of data.

The key to the usability of a data-sharing peer-to-peer
system is the ability to search for and retrieve data effi-
ciently. The best way to search in a given system depends
on the needs of the application. For example, DHT-based
search techniques (e.g., [19, 15, 16]) are well-suited for
file systems or archival systems focused on availability, be-
cause they guarantee location of content if it exists, within
a bounded number of hops. To achieve these properties,
these techniques tightly control both the placement of data
among peers and the topology of the network, and cur-
rently only support search by identifier. In contrast, other
mechanisms, such as Gnutella [10], are designed for more
flexible applications with richer queries, and meant for a
wide range of users from autonomous organizations. These

search techniques must therefore operate under a different
set of constraints than techniques developed for persistent
storage utilities, such as providing greater respect to the au-
tonomy of individual peers.

We are interested in studying the search problem for
these “flexible” applications because they reflect the charac-
teristics of the most widely used systems in practice. Most
of the research in this area has focused onforwarding-based
techniques, where a query message is forwarded between
peers in the overlay until some stopping criterion is met.
Different refinements of forwarding-based techniques have
been studied, such as arranging good topologies for the
overlay [4, 6], intelligent forwarding of messages within the
overlay [22, 5, 20, 17], the use of lightweight indices, data
replication [3], and many combinations of the above [2].

Despite the success of the above research in show-
ing how forwarding-based techniques can be effec-
tive, some of the results also raise the question of
whether message forwarding is truly necessary. For ex-
ample, message-forwarding makes it difficult to con-
trol how many peers receive the query message, and which
peers receive it, since there is no centralized point of con-
trol to monitor and guide the messages. However, ref-
erences [5, 22] show that incremental forwarding of
query messages and intelligent peer selection greatly im-
proves search performance without affecting quality of
results.

In this paper, we wish to investigate a new type of search
architecture, in which messages arenot forwarded, and
peers have complete control over who receives its queries
and when. We are currently studying this non-forwarding
architecture in the context of the GUESS [11] protocol, an
under-construction specification that is meant to become the
successor of the widely-used but inefficient Gnutella proto-
col. Under the GUESS protocol, peers directly probe each
other with their own query messages, rather than relying on
other peers to forward the message.

However, the GUESS protocol is being designed with-
out a good understanding of the issues and necessary strate-
gies to make it work. For example, when processing a query,
in what order should peers be probed? The solution to this
”peer selection” problem must balance efficiency of the
query with load-balancing among the peers. Also, if mes-
sages are not forwarded, then a peer must know of many



other peers (rather than just a handful of neighbors) in or-
der to successfully find answers to its queries. How should
this large state be built up and maintained? Practical prob-
lems not directly related to search performance must also be
addressed; for example, since peers no longer rely on other
peers to forward their queries, it is much easier for peers to
abuse the system for personal gain. How can we detect and
prevent selfish behavior? We are currently investigating so-
lutions to these and other issues to make GUESS a viable
alternative to other proven P2P search protocols.

We note that the non-forwarding concept has also been
proposed for one-hop lookup queries in DHTs [1]. Like [1],
the purpose of GUESS is to reduce the overhead of mes-
sage forwarding; however, because GUESS allows “flexi-
ble” search over loosely structured networks, the protocol
and its underlying issues (e.g., how to maintain state, how
to select peers to query, etc.) are very different.

In this paper, our goals are to promote the con-
cept of a non-forwarding search mechanism for flexible
search, understand what the tradeoffs are compared to ex-
isting forwarding-based techniques, and investigate how the
GUESS non-forwarding protocol can be optimized. In par-
ticular, our contributions are as follows:
� We present an overview of the GUESS protocol (Sec-

tion 2), based on the specification written by the Gnutella
Development Forum [11].

� We identify the importance ofpoliciesin the performance
of a non-forwarding protocol, and introduce several poli-
cies that are feasible to implement in a real system, and
that might accomplish reasonable goals such as fairness,
freshness, efficiency of search, etc.

� Using simulations, we demonstrate how GUESS, if im-
plemented in a straightforward way, can have serious per-
formance problems. For instance, we show how careful
choice of policy can improve performance dramatically
(Section 6.2), but that a naive choice can result in a mech-
anism that is unfair (Section 6.3), and not robust (Sec-
tion 6.4).

2. GUESS Protocol

In this section we describe the GUESS protocol for
querying and state maintenance. For more details, please re-
fer to the original specification [11]. Some of the informa-
tion in this section is not part of the original protocol (e.g.,
the format of a cache entry), but are implementation details
added for clarity.

2.1. Basic Architecture

Peers running the GUESS protocol will maintain two
caches, or lists of pointers (IP addresses) to other peers: a
link cache, and aquery cache. The link cache is analogous
to a peer’s neighbor list in Gnutella; all peers appearing in
the link cache of a peerP can be consideredP ’s neigh-
bors. Rather than keeping an open TCP connection with

Figure 1: Illustration of a small GUESS network. Note that
peer A points to peer C, but C does not point back to A; peer B
has one entry pointing to a non-existing peer. Although neigh-
bor pointers do not actually represent open, active connec-
tions between peers, they still form a “conceptual” overlay net-
work, as illustrated in Figure 2

Figure 2: Conceptual overlay representation of the GUESS
network in Figure 1

each neighbor, however,P will communicate with neigh-
bors via UDP. Hence, the “neighbor” relationship is one
way: if Q appears inP ’s link cache,P might not appear
in Q’s link cache. Furthermore, because the UDP protocol
does not maintain an active connection between two hosts,
it is possible for a peer’s neighbor to die without the peer’s
knowledge. We discuss the issue of maintaining neighbor
pointers in Section 2.2. Please refer to Figure 1 for an illus-
tration of a GUESS network.

Thequery cacheis simply a “scratch space” to temporar-
ily hold large number of pointers to other peers in order to
improve query performance. We discuss the use of the query
cache further in Section 2.3.

An entry in the link or query cache, essentially a
“pointer” to some peerQ, has the following format:

fIP address ofQ;TS;NumFiles;NumResg (1)

TheTS field holds the timestamp of the last interaction with
peerQ. WhenP interacts withQ, regardless of which party
initiated the interaction,P will update theTS field in its
cache entry forQ, if such an entry exists. The NumFiles
field holds the number of files being shared byQ. This field
is set byQ when it first “introduces” itself to the network,
and is passed on as cache entries are shared (introduction
and cache entry sharing are discussed in Section 2.2). Sim-
ilarly, the NumRes field holds the number of results last re-
turned byQ. Each time peerP sends a query to peerQ,



it resets the value of NumRes according toQ’s response to
that query.

2.2. Maintaining State

Because peers in P2P systems typically have short life-
times [18], peers must actively make sure the entries in
their link cache are fresh. Otherwise, over time a peer’s link
cache will accumulate the addresses of many dead peers,
which can result in poor query performance for that peer,
and fragmentation of the “conceptual overlay.”

A peer maintains its link cache by periodically select-
ing an entry and sending aPingmessage to the neighbor. If
the neighbor does not respond, the peer will evict this en-
try from its cache. If the neighbor does respond, then the
peer will update theTS field of the cache entry. Note that
given a fixed effort from the peer to maintain its link cache,
the rate at which a given cache entry is pinged is inversely
proportional to the size of the cache. Therefore it is impor-
tant that the cache not be too large; otherwise, it cannot be
properly maintained.

When a peer receives a Ping message, it will respond
with a Pong message. A Pong message contains a small
number of IP addresses selected from the peer’s own link
cache. The purpose of Pong messages is to allow peers to
sharecache entries with each other. Sharing entries helps
peers discover new live, productive peers to place in their
cache. When a peer receives a Pong message, it will de-
cide whether to add some or all of the entries to its link
cache, depending on the cache replacement policy in use. If
the peer does decide to place an entry from the Pong mes-
sage into its own cache, it does not update any of the fields
(i.e.,TS, NumFiles, or NumRes).

When a new peer first joins the network, it does not ap-
pear in any other peers’ link caches. Anintroduction pro-
tocol is needed to bring the IP address of new peers into
the link caches of existing peers. For our purposes, we as-
sume that when a peerP initiates an interaction with peerQ
by sending either a Ping or Query message, thenQ will add
P to its cache with some probabilityp. Note that it is im-
portant thatp < 1; otherwise it would be very easy for ma-
licious peers to infiltrate the caches of many good peers (see
Section 6.4 for a discussion of “cache poisoning”). A new
peer will therefore be added to existing peers’ caches with
some probability as soon as it initiates a query or ping. Once
the new peer appears in other peers’ caches, it can be circu-
lated even further via Pong messages.

2.3. Query Propagation

The essential characteristic of GUESS is that Query mes-
sages are not propagated via flooding-based broadcast. In-
stead, a GUESS peer simply iterates through the entries in
its link cache, and performs a unicast query, orprobe, to the
target peer. A peer should probe only as many other peers as
necessary to obtain a sufficient number of results. Also, the

GUESS protocol specifies that query happens in a strictly
serial manner; after sending a probe, a peer must either re-
ceive the reply or wait for atimeout period, before it may
probe the next neighbor.1

In some cases, a querying peer must be able to probe a
large number of peers to receive satisfactory results. How-
ever, the number of addresses that a peer can actively keep
track of is limited by the size of the link cache. As we dis-
cussed in the previous section, the link cache must be rela-
tively small if we are to maintain it properly.

To counter this problem, when a peer is probed, it re-
turns a Pong message in addition to any results to the query
it may find. Then, the querying peer places the entries from
this Pong message in itsquery cache, which is a tempo-
rary cache of (theoretically) unbounded size. Entries in the
query cache have the same format as link cache entries. The
querying peer may probe peers from either its link cache
or its query cache. In this manner, a peer is able to probe
a much larger number of peers than it can maintain in its
link cache. Entries in the query cache are not maintained
after the query is completed, otherwise, maintenance over-
head would be too high. However, qualifying entries may
be inserted into the link cache, depending on the cache re-
placement policy in use.

3. GUESS vs. Gnutella

To understand the advantages and drawbacks of the non-
forwarding GUESS protocol at a high level, we would
like to compare it to Gnutella, the predecessor to GUESS.
Gnutella is a forwarding-based protocol, and is also the
closest existing protocol to GUESS in terms of functional-
ity and intended use. Unfortunately, a direct comparison be-
tween GUESS and Gnutella is difficult because a great deal
of research has been done to improve Gnutella. GUESS on
the other hand is relatively new and there are many possi-
ble improvements that might be made. Furthermore, it is not
feasible to implement all of the possible optimizations for
each protocol to produce a quantitative comparison, nor is
it reasonable to compare implementations of the basic ver-
sions of the protocols which have some obvious shortcom-
ings. Hence, in this section we present a high-level,quali-
tativecomparison of the efficiency and security characteris-
tics of the two protocols. We attempt to focus on the funda-
mental characteristics of GUESS and Gnutella, which will
hold true despite optimizations on either protocol. In Sec-
tion 6, we perform an in-depth quantitative analysis of the
GUESS protocol only.

3.1. Query Performance

Perhaps the primary point of comparison between
GUESS and Gnutella is that of efficiency of queries, in

1 Parallel probes are also possible, although the current GUESS specifi-
cation makes no such provisions.



terms of network resources used. In Gnutella, the loca-
tion and extent of a query are determined by the overlay
topology; queries will be received by whichever peers hap-
pen to be within a certain radius of the originator. Because
the execution of a query is not adaptive, it is often ineffi-
cient. For queries for popular items, Gnutella returns far
too many results; for queries for rare items, Gnutella does
not return enough results. Furthermore, although differ-
ent peers may have different needs (e.g., search for different
types of content), the basic Gnutella protocol does not dif-
ferentiate between peers.

In contrast, the GUESS search protocol provides each
client with fine-grained control over the execution of the
query. In particular, peers can control: (1) theorder in
which other peers are probed, and (2) theextentof a query.
By controlling the order of probes, a peer in GUESS can use
metadata or past experience to identify other peers that can
quickly return results. In Section 6.2 we will see how the or-
der in which peers are probed has an enormous impact on
query performance. One drawback to ordering probes is the
possibility of hotspots, where many peers all try to probe
the same productive peer, and that productive peer is over-
loaded. This issue is further explored in Section 6.3. We also
note that to a limited extent, techniques such asrouting in-
dices[5] anddirected breadth-first-search[22] allow peers
in Gnutella to control the order in which peers receive their
query.

By probing peers iteratively (rather than all in parallel),
a peer can adapting the extent of a query to the popularity
of the item being sought, thereby resulting in fewer wasted
probes, and better satisfaction results. If a file is popular
and adequate results are obtained quickly, a search can be
terminated after querying a small number of peers. Alterna-
tively, if a file is rare, the search can continue over a much
larger number of peers until the search is satisfied. Again,
to a limited degree, techniques such asiterative deepen-
ing [22] allow peers to control the extent of the query. How-
ever, the degree of control is much more coarse-grained than
in GUESS, thereby resulting in greater inefficiency.

One important drawback to probing peers iteratively is
poor response time. For example, if 1000 peers are probed
before the query is satisfied, and peers must wait .2 seconds
between successive probes, the query will be satisfied only
after 200 seconds – possibly too long a time to satisfy the
user. In contrast, because all peers in Gnutella are probed in
parallel (more or less), response time for Gnutella is very
good. Response time in GUESS may be improved by par-
allel walks (probing a small number of peers in parallel),
or adapting the rate of probes according to how many peers
have already been probed. For example, for every 10 sec-
onds that pass by without finding a result, the rate of probes
may be doubled. Furthermore, if the order in which peers
are probed is carefully chosen, response time may actually
be better in GUESS than Gnutella, in some cases. Again, re-
sponse time in GUESS is further explored in Section 6.

3.2. State Maintenance

Although GUESS is generally superior to Gnutella in
terms of query efficiency, it is inferior to Gnutella in regards
to the cost and complexity of state maintenance. A Gnutella
peer maintains a small number of open network connec-
tions to its neighbors in the overlay network. In contrast,
a GUESS peer must maintain pointers in a fairly large pong
cache. Although the size of state is generally not an issue
given the availability and low cost of memory, the amount
of network traffic needed to maintain the cache can be high
if the cache is large (which is generally true if the network
is large). In Section 6.1 we investigate the cost of maintain-
ing state in greater detail.

Related to the above concept of state is the consistency
of the network over time. In Gnutella, because state is lo-
calized to the immediate neighbors of each peer, the pro-
cess of joining and leaving the network is simple. A peer
notifies its neighbors when it joins or leaves the network,
and only these neighbors need to modify their state to main-
tain a consistent view of the network. In contrast, a peer in
GUESS may belong in the link caches of many other peers,
but because neighbor relationships are 1-way, does not have
knowledge of who these other peers are. Hence, when a
peer leaves the network, it leaves without notifying anyone.
Other peers must then discover the death of that peer with
an unsuccessful probe, which results in wasted work. Fur-
thermore, when a peer joins the network, it must actively in-
troduce itself into other peers’ pong caches, before it can be
of any use to the network.

3.3. Security

Because peers in a large-scale P2P system are au-
tonomous and may come from competing organizations,
a good search protocol must be robust against misbehav-
ing peers. We define two types of misbehavior:selfish
behavior, andmaliciousbehavior.

Selfish Peers.A selfish peer tries to “game” the system in
order to maximize its own utility, regardless of the cost it
imposes on other peers. It does not desire to bring down the
system, since that would cause poor utility to the selfish peer
as well. With a search protocol like GUESS or Gnutella, a
selfish peer will attempt to maximize the number of results
it receives, while minimizing response time.

In Gnutella, it is difficult for a single peer to game the
system, because peers do not have control over the execu-
tion of their own query. If a peer wishes to receive more
results for its queries in less time, then it must connect to
more neighbors. Having more neighbors increases the load
on that peer, due to the forwarding traffic in Gnutella; hence,
in order to improve its search performance, a peer must first
contribute greater resources to the system. Although a peer
may drop messages in order to reduce its load, it is a sim-
ple matter for its neighbors to observe that they rarely re-



ceive traffic (e.g., query response messages) from the self-
ish peer, and to disconnect from that peer in return.

In GUESS, it is very easy for a peer to game the system,
because peers have complete control over the execution of
their own queries. Rather than iteratively probe peers on a
query, a selfish peer can simply probe thousands of peers at
a time. This behavior may incur a much higher load on other
peers (e.g., if the query could have been answered with 20
probes), while possibly drastically improving the response
time of the search for the querying peer. If all peers act ac-
cording to their best interests, the system might fail as if un-
der a denial of service (DoS) attack. Therefore, in order for
GUESS to work, there must be a way to give peers an in-
centive to adhere to the protocol. One straightforward pro-
posal is to have peers “pay” for each probe. Peers will then
be motivated to probe as few peers as possible to answer
their queries. Such a solution does require a payment mech-
anism, such as [23]. Other ways to limit selfish behavior re-
mains an open problem.

Malicious Peers.The goal of a malicious peer is to make
the system unusable. For the purposes of comparison, we
will focus on attacks on the protocol itself; we ignore at-
tacks such that are unrelated to the choice of protocol, such
as returning inauthentic documents. We will discuss mali-
cious behavior further in Section 6.4, where we will also
consider ways to improve the robustness of the GUESS pro-
tocol.

The Gnutella protocol is susceptible to application-level
denial-of-service(DoS) attacks, due to the “amplification
effect” inherent to the protocol. Because queries are flooded
across the network, a malicious peer needs to expend little
effort to cause a much higher load on the system. Refer-
ence [8] presents some techniques for preventing DoS at-
tacks in Gnutella, though naturally, these preventative mea-
sures result in lower efficiency in the case of cooperative
behavior.

Some studies (e.g., [18]) also suggest that Gnutella
is susceptible tofragmentation attacks, where highly-
connected peers are brought down via network-level DoS
attacks, and the overlay topology is fragmented. Fragmen-
tation is bad because it can result in worse quality of re-
sponse (e.g., fewer responses) for queries. However, this
weakness is not inherent to the Gnutella protocol it-
self, but is an artifact of the type of topology (power-law)
that naturally arises from peers’ local connection deci-
sions [[REFERENCE?]]. The Gnutella network can be
made more robust, for example, by imposing simple lim-
its on the number of connections peers are allowed to
make.

The GUESS protocol is not as susceptible to application-
level DoS attacks, because query messages are not ampli-
fied – the malicious peer will need to expend effort pro-
portional to the number of messages sent. However, as dis-
cussed earlier, peers acting selfishly can induce a similar ef-
fect.

On the other hand, the GUESS protocol is susceptible to

fragmentation attacks, if malicious peers collude. It is fairly
easy for a malicious peer to insert itself or other malicious
peers into good peers’ link caches, via Pong messages. If a
large percentage of many peers’ link caches are filled with
malicious peers, and all malicious peers disappear from the
system at the same time, then the conceptual overlay formed
by peers’ link caches will become fragmented. Such behav-
ior by malicious peers is known as “cache poisoning”. The
effects of cache poisoning and prevention are discussed fur-
ther in Section 6.4.

Finally, we note that other security-related issues, such
as privacy and anonymity, are easier to achieve in Gnutella
than in GUESS. Because peers control their own queries in
GUESS, there is no way for a peer to hide its query behav-
ior from other observing peers. Therefore, GUESS may not
be appropriate for certain privacy-sensitive applications.

In summary, giving peers control over the execution of
their query, while potentially improving efficiency of the
system (as discussed in the previous section), also opens
up the possibility of abuse and manipulation. If we are to
give such control to peers, we must (1) learn how peers can
best use this control to optimize query performance, (2) add
other mechanisms or incentives to enforce correct behav-
ior, and (3) learn how peers can avoid being manipulated
by malicious peers. For the remainder of this paper, we fo-
cus on the first question of performance optimization, but
address the second and third questions as well. (weak)

4. Policies

We observe that performance of the GUESS protocol de-
pends heavily on thepolicies that determine how entries
in the pong cache are used and maintained. For example,
by constructing a Pong message using entries with the lat-
est timestamps, and evicting entries with the oldest times-
tamps, peers might be able to maximize the number of live
entries in their cache. As another example, by first prob-
ing peers who have a history of providing useful informa-
tion, peers can drastically reduce the total number of probes
needed to answer a query. Hence, any deployment of the
GUESS protocol must first carefully consider which poli-
cies to implement.

There are fivetypesof policies which we must con-
sider:
� QueryProbe – the order in which peers in the link and

query caches are probed for queries
� QueryPong – the preference given to entries when con-

structing a Pong message in response to a Query
� PingProbe – the order in which peers in the link cache

are pinged
� PingPong – the preference given to entries when con-

structing a Pong message in response to a Ping
� CacheReplacement – the order in which peers are

evicted from the link cache
We consider QueryProbe and PingProbe (and QueryPong
and PingPong) separately because a peer might have differ-



ent goals during a query and during a ping. For example,
during a query, a peer may prefer to probe other peers who
are likely to have a file. For a ping, however, a peer may pre-
fer to probe other peers who have many link cache entries,
or are known to be alive.

For each of the policy types discussed above, many poli-
cies could be implemented. For the purposes of our exper-
imentation, we came up with a number of policies that we
felt would be feasible to implement in a real system, and
that might accomplish reasonable goals such as fairness,
freshness, efficiency of search, etc. The policies that we im-
plemented are listed below along with a brief discussion of
the rationale for each policy.

Note that for Cache Replacement, the policy name in-
dicates what peers get evicted from the cache. Therefore,
to get the same intended effect as, say, a Probe policy, we
must reverse the criterion used. For example, to effect a
Most Files Shared goal, we use a Cache Replacement pol-
icy of Least Files Shared, since by evicting those peers
with a small number of files we retain the ones with more
files. Similarly, Most Results becomes Least Results, and
Least/Most Recently Used become Most/Least Recently
Used.

Random (Ran)– selects entries at random. This policy
is used as a baseline for comparison, and is likely to be very
fair in terms of load distribution.

Most Recently Used (MRU)– prioritizes link cache en-
tries with the most recent timestamps. These entries are
most likely to be alive since they have been in contact re-
cently; therefore MRU should waste the least amount of
work in probing dead peers.

Least Recently Used (LRU)– opposite of MRU, priori-
tizing cache entries that have old timestamps. The rationale
behind LRU isfairness; rather than continually querying
the same set of peers, load is spread across peers that have
not been contacted recently. Of course, peers with very old
timestamps are more likely to be dead, resulting in wasted
probes.

Most Files Shared (MFS)– prioritizes entries based on
the number of files they share. The impetus for such a pol-
icy is obvious; peers with many files are more likely to be
able to have files related to the query. A potential down-
side to this policy is that the measure used (files shared) is
global, and so the peers with many files shared are likely to
be queried by a large number of peers, making them shoul-
der an unfair amount of work in the network.

Most Results (MR) – similar in nature to Most Files
Shared, prioritizes entries based on the number of good re-
sults that the corresponding peers have returned in the past.
Typically, peers that have been fruitful in the past may be
more likely to be good in the future. MR is less suscepti-
ble to lying than MFS, although often less good at identify-
ing useful peers.

One potential advantage of MR over Most Files Shared
is that MR includes some notion ofpersonalusefulness. A
peer with many files may not have the files that I want; how-

ever, if the queries that I generate are related, then perhaps
a peer that has worked well for me will continue to work
well, regardless of its total number of files. Similarly, MR
might be better than MFS at identifying peers who are actu-
ally capable of servicing queries, which is important when
capacity limits come into play.

5. Experimental Setup

Parameters.We will be comparing differentconfigura-
tionsof the GUESS protocol, where a configuration is de-
fined by a set of system and protocol parameters, shown
in Tables 1 and 2, respectively. System parameters describe
the nature of the system on which the GUESS protocol is
used (e.g., the query behavior of the users). Protocol pa-
rameters then describe how the GUESS protocol is config-
ured (e.g., the policy used to order query probes). As we will
see in Section 6, different protocol parameters result in bet-
ter performance in different system scenarios. Parameters
will be described in further detail as they are used later. Un-
less otherwise specified, our simulations use the default val-
ues shown in these tables.

Note that NetworkSize=1000 is a modest number of
peers, given the scale of the types of system we expect to
use GUESS. In our results section, we show how our re-
sults scale with network size, when appropriate.

Metrics. The main metric of query efficiency is the aver-
age number ofprobes per queryneeded; minimizing probe
traffic is one of the primary goals of the GUESS proto-
col. Of course, such a goal is only reasonable if users re-
ceive results for their queries, hence another key metric is
the proportion of queries that gounsatisfied(i.e., do not
return NumDesiredResults answers). We also exam-
ine the proportion of probes that arewasted; that is, sent to
peers that have already left the network. For each peer, we
also measure the number ofreceivedprobes; comparing the
load across peers help us to gauge fairness as well as effi-
ciency.

5.1. Simulation Framework

In a given simulation run, we simulateNetwork-
Size peers participating in the GUESS protocol. At
time 0, all peers are alive. Each link cache is seeded with
CacheSeedSize living peers. We found that as long as
CacheSeedSize was small (e.g., approximatelyNet-
workSize /100), the value ofCacheSeedSize did not
affect performance results.

As time progresses, peers will die. A large sample of peer
lifetimes in the Gnutella network was measured in [18]. For
our simulations, the lifetime of a peer is drawn randomly
from this sample. In addition, we may tune these lifespans
via the LifespanMultplier parameter. IfLifes-
panMultiplier = x, then all values in the measured
distribution of lifespans are multiplied byx.



Name Default Description
NetworkSize 1000 Number of peers in the network
NumDesiredResults 1 Number of desired results per query
LifespanMultiplier 1 Parameter used to vary peer lifespans
Query Rate 9:26 � 10

�3 The expected number of queries per user per second
MaxProbesPerSecond 100 Maximum number of probes per second a peer is willing or able to handle
PercentBadPeers 0 The percentage of peers in the network that are malicious
BadPongBehavior Dead The type of IP address a bad peer returns in a pong (Dead, Bad, or Good)

Table 1: System parameters, and default values

Name Default Description
QueryProbe Random The policy used to determine which peer to probe for a query
QueryPong Random The policy used to determine which IP addresses to return in a pong
PingProbe Random The policy used to determine which peer to probe for a ping
PingPong Random The policy used to determine which IP addresses to return in a pong
CacheReplacement Random The policy used to determine which peer to evict from the link cache
PingInterval 30s Elapsed time between pings
CacheSize 100 Size of the link cache
ResetNumResults No Flag indicating whether to reset the responses field in a cache entry
DoBackoff No Flag indicating whether to perform backoff
PongSize 5 Number of IP addresses per pong
IntroProb .1 Probability of adding to your cache a peer who probes you.

Table 2: Protocol parameters, and default values

When a peer dies, we assume that it never returns to
the system. This assumption is conservative in that it is
the worst-case scenario for cache maintenance; our main-
tenance policies must be shown to be effective even in this
worst case. Also, when a peer dies, a new peer is “born”. In
this way, there are alwaysNetworkSize live peers in the
system. When a peer joins the network, it must populate its
link cache. We use therandom friendseeding policy as de-
scribed in [9]. Under the random friend policy, we assume
that the new peer knows of one other peer, or “friend”, that
is currently alive. The new peer initializes its link cache by
copying the link cache of its friend. A friend can be the IP
address of a peer that the new peer saved from when it was
last online, or peers can obtain the IP address of a friend
from a “pong server.” A pong server (e.g., LimeWire [14]
for the Gnutella network) is a service that keeps track of
live peers in the system. Because such a service is central-
ized and potentially expensive (e.g., if it receives many re-
quests), we do not wish to make heavy use of the service.
In particular, it is not reasonable for each new peer to ask
the pong server to initialize its link cache with the IP ad-
dresses of many live peers.

The generation of queries at each peer follows a bursty
pattern, in which a number of queries (number uniformly
chosen between 1 and 5) are submitted in succession, fol-
lowed by a long wait. The arrival of bursts follow a Poisson
process, and the overall rate of queries per user is given by
Query Rate . When a peer has a query, it will iteratively
probe the peers in its link cache, which is of sizeCache-
Size , until NumDesiredResults results are returned.
The order in which the peer probes other peers is deter-
mined by theQueryProbe policy. For the purposes of our
simulation we assume that timeout period between probes
is long enough for a live peer to respond within the period.
In real life some peers may take longer than the timeout pe-

riod; however, this would simply mean that a few unneces-
sary probes are performed, and would not significantly alter
our results.

When a peer is probed, and it is notoverloaded(de-
scribed below), it will see if any files in its collection an-
swer the query. To determine whether a peer returns a re-
sult for a query, we use the query model developed in [21].
Though this query model was developed for hybrid file-
sharing systems, it is still applicable to the file-sharing sys-
tems we are studying. The probability of a peer returning
a result depends partially on the number of files owned by
that peer; number of files owned by peers are assigned ac-
cording to the distribution of files measured by [18] over
Gnutella. Whether or not a match is found for the query, the
responding peer returns a Pong message withPongSize
IP addresses to the querying peer. The IP addresses are se-
lected from the link cache according to theQueryPong
policy. When the querying peer receives the Pong, it will
possibly insert the new IP addresses into its link cache, ac-
cording to theCacheReplacement policy. The peer will
also add the IP addresses to its query cache, if they have not
already been seen before.

Peers set a maximum number of probes per second that
it is able or willing to handle, according toMaxProbe-
sPerSecond . Although different peers may have differ-
ent capacities, we assume that in the interest of fairness, all
peers set the same load limit. A peer isoverloadedif the
number of probes it must process per second is greater than
MaxProbesPerSecond . When a peer becomes over-
loaded, it “refuses” a probe, meaning it notifies the query-
ing peer that it is overloaded, and that the querying peer
should “back off” from probing it. We will discuss back-
ing off in further detail in Section 6.3.

Peers maintain the IP addresses in their link cache by
pinging one peer everyPingInterval seconds. The or-



der in which peers are pinged is determined by thePing-
Probe policy. As with query probes, when a peer receives
a ping, it will respond with a Pong message containing
PongSize IP addresses. The IP addresses are selected
from the link cache according to thePingPong policy.
When the querying peer receives the Pong, it will possi-
bly insert the new IP addresses into its link cache, accord-
ing to theCacheReplacement policy.

TheIntroduceProb parameter sets the probability of
adding a peer to your cache when that peer initiates an inter-
action, according to the introduction policy we use (discus-
sion of introduction policies is found in Section 2.2). The
parametersPercentBadPeers andBadPongBehav-
ior describe malicious peer behavior, and are discussed
further in Section 6.4.

When a peer is probed, to determine whether it returns
a result for the query, we use the query model developed
in [21]. Though this query model was developed for hybrid
file-sharing systems, it is still applicable to the file-sharing
systems we are studying. The probability of returning a re-
sult depends partially on the number of files owned by that
peer; number of files owned are assigned according to the
distribution of files measured by [18] over Gnutella.

A peer sets a maximum number of probes per second
that it is able or willing to handle, according toMax-
ProbesPerSecond . Although different peers may have
different capacities, we assume that in the interest of fair-
ness, all peers set the same load limit. A peer isover-
loadedif the number of probes it must process per second
is greater thanMaxProbesPerSecond . When a peer be-
comes overloaded, it drops queries.

6. Results

In the following section, we present the results of our ex-
periments over a wide range of system and protocol config-
urations. We organize the results into four main categories.
First, we investigate the issue of maintaining the link cache
(Section 6.1) in the face of frequent peer downtimes. We
then study the behavior of policies in various system sce-
narios: in Section 6.2, we study basic performance in the
default usage scenario. We then investigate the fairness of
policies and their ability to perform in the presence of lim-
ited peer capacity (Section 6.3), as well as the robustness of
policies to misbehaving peers (Section 6.4).

6.1. Maintaining the Link Cache

Two of the most important issues in maintaining the link
cache is the size of the cache, and the rate at which the cache
is maintained via Pings.

Cache Size. Intuitively, very small cache sizes re-
sult in poor performance, because peers do not have enough
“neighbors” to probe. Hence, queries will often not be satis-
fied. On the other hand, it is not immediately clear whether

Cache Fraction Absolute
Size Live Live
10 .822 8.0
20 .759 14.8
50 .605 28.5
100 .418 36.2
200 .330 41.9
500 .309 41.9

Table 3: Breakdown of live cache entries for varying
PingIntervals

very large cache sizes will result in good performance, be-
cause of the effort necessary to maintain the freshness of
the entries.

To investigate the impact of cache size on performance,
Figures 3 and 4 look at query performance as cache size
is varied, over a number of different network sizes rang-
ing from 200 to 5000. Due to limitations in our simulator
we do not scale beyond 5000. We study cache sizes rang-
ing from 5 (very small) to the size of the network. To pro-
vide additional “strain” on the system, we setLifespan-
Multiplier to .2.

In Figure 3, we see immediately that as the size of the
cache grows, regardless of network size, the number of
probes per satisfied query also grows. A reasonable expla-
nation for this phenomenon immediately comes to mind:
as the size of the cache increases, there are more peers to
probe. Hence, many of the queries that were previously un-
satisfied will now be satisfied, albeit at a higher number of
probes. The consequence of this explanation is that as cache
size increases, the unsatisfaction rate decreases.

Surprisingly, however, we see in Figure 4 that this ex-
planation does not hold. As we expected, unsatisfaction is
high when cache size is very small. However, across all net-
work sizes shown, unsatisfaction experiences a minimum at
a moderate cache size, after which point it increases once
more. In other words, very large cache size not only results
in more expensive queries, it also results in lower satisfac-
tion.

To understand this phenomenon, Table 3 looks at the av-
erage fraction of cache entries that are live, as well as the
average absolute number of live cache entries, for various
cache sizes (using the default NetworkSize = 1000). Note
that the total number of cache entries may be less than the
cache size itself. The CacheSize parameter only tells us the
capacity of the cache. Often caches are not full because en-
tries are evicted if they are found to be dead.

Let us first consider the fraction of live cache entries
(column 2) in Table 3. Here we see that the fraction of live
entries greatly decreases as the size of the cache grows (al-
though absolute number of live entries increases). The frac-
tion of live entries is important because, given a Random
probe policy, it roughly governs the fraction of probes to
live peers (i.e., “good” probes), and the fraction of probes
to dead peers (i.e., “dead” probes).

The effect of this ratio can be seen in Figure 5, where
we take a closer look at the number of probes required to
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answer a query. For clarity, we look only at our default net-
work size of 1000. The probes are broken down into “good”
and “dead” probes. We see from Figure 5 that as cache size
increases, the number ofdeadprobes increases dramatically
at first, and then levels off. The number of good probes,
however, doesnot increase. Hence, although larger cache
sizes result in a larger number of probes, they do not trans-
late to more satisfied queries, because the additional probes
are all useless.

In fact, the number of good probes experiences a local
maximum at a cache size of 20. At this maximum, the num-
ber of good probes is almost 30% higher than when cache
size is 200. Since the satisfaction of a query depends only on
the number of good probes, we can understand why satis-
faction also reaches a maximum at a cache size of 20 (Fig-
ure 4). At larger cache sizes, the link cache maintainence
effort is “spread too thin” over a large number of entries;
hence, fewer entries are good when a query is executed. In
addition, because Pong messages will contain more dead
IPs if peers’ link caches contain more dead IPs, the total
number of usefulquery cacheentries will also decrease pro-
portionally.

In terms of how to select a cache size, clearly, moder-
ate cache sizes have the best cost/performance tradeoff. In
fact, in Figure 4, we see that a cache size in the range of
20-70 (range marked by dotted lines) results in best satis-
faction – for all network sizes studied, the optimal cache
size does not change with network size. Intuitively, opti-
mal cache size might grow with network size, and experi-
ments with very large network sizes (e.g., a million) should
make this apparent. However, our experiments show strong
evidence that optimal cache size grows very slowly, if at
all. Hence, even with very large network sizes, a reasonably
small cache size is sufficient for good performance.

Ping Interval. A fragmented overlay is bad because it de-
grades query performance, and unless there is some form
of centralized boot-strapping server (e.g., pong servers such
as those run by LimeWire [14] for Gnutella), the network

is unlikely to heal. Here, we study how PingInterval must
be set in order to maintain aconnectedtopology. All cache
sizes considered in our study thus far are large enough to
maintain a connected topology, assuming cache entries are
well-maintained. In order to keep a well-maintained cache,
PingInterval may need to be adjusted as CacheSize and Net-
workSize vary.

We note that cache is maintained via Ping messages, and
also via query messages, since peers respond to queries with
both query responses and Pong messages. To isolate the ef-
fect of Pings, in the remainder of the section we do not sim-
ulate queries.

Figure 6 shows us the size of the largest connected com-
ponent in a GUESS “conceptual overlay” for various cache
sizes, as PingInterval varies across the x-axis. A fully con-
nected network will have the largest connected component
of size 1000. As expected, the smaller the PingInterval, the
more connected the overlay is. As PingInterval increases,
the overlay begins to fragment.

Comparing across the curves in this figure, we see that
the smaller the cache size is, the smaller PingInterval must
be. That is, smaller cache sizes must be more closely main-
tained. At first this result may seem surprising when com-
pared to our results in the previous section, where smaller
cache sizes result in better query performance. The reason
for this difference is that for query performance, theratio
of live to dead peers is critical, whereas for connectivity,
the absolute numberof live peers is more important. Re-
turning to Table 3, we see that although smaller cache sizes
can have a dramatically higher fraction of live entries than
large cache sizes, the absolute number of live cache entries
is larger for large cache sizes.

In terms of how NetworkSize affects PingInterval, we
found that for moderate cache sizes (e.g., between 20 and
100), the connectivity of the overlay is largely unaffected by
network size. Figure 7 shows the relatively connectivity of
the GUESS overlay as PingInterval varies along the x-axis,
for various network sizes. In this figure, CacheSize = 20,
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regardless of NetworkSize. We see from Figure 7 that the
relative size of the largest connected component is roughly
the same across network sizes, for a given PingInterval. Al-
though one might expect that larger network sizes require
more links per peer to remain connected, this is in fact not
the case; we have experimental evidence showing that each
node in a random graph requires a small constant number
of links for the graph to be connected with high probabil-
ity.

In conclusion, there does not appear to be a set rule for
good PingIntervals, but this parameter may be adjusted at
runtime. After selecting a cache size that results in good
query performance, a peer should adjust its PingInterval to
maintain a certain threshhold of live entries in its cache.
While sending query or Ping messages, if a peer discov-
ers that many of its probes are to dead addresses, the peer
should decrease its PingInterval. On the other hand, if a peer
discovers that almost all its entries are live, then it may in-
crease its PingInterval, if the current overhead of Ping/Pong
messages is placing a heavy burden on its resources (which
is possible, though unlikely). Given these guidelines, along
with the guidelines for selecting a cache size, peers can
maintain the health of the network with a very reasonable
overhead.

6.2. Basic Policies

Flexible Extent: First, we highlight the performance
benefits of a completely flexible query extent. Figure 8
shows the tradeoff curve between the average cost of a
query and the unsatisfaction rate for three different search
mechanisms: a fixed-extent mechanism (e.g., Gnutella), a
coarse-grained flexible extent mechanism (e.g., the iterative
deepening [22] approach), and a fine-grained flexible extent
mechanism (e.g., GUESS). With regards to extent, iterative
deepening (shown by a square in Figure 8) is conceptually
similar to GUESS, except that many peers (e.g., hundreds)
are probed in each iteration, instead of just one. The ’o’ and
’x’ mark the points in the figure that represents GUESS, us-
ing the Random baseline policy andQueryPong = MFS,

respectively. Finally, for the fixed-extent mechanism, we
evaluated the rate of unsatisfied queries for all fixed extent
sizes from 1 to 1000, in order to view the tradeoff between
efficiency and quality.

From Figure 8, we can see the enormous performance
gains that a flexible extent allows. For example, GUESS can
achieve an unsatisfaction rate of almost 6% with an average
query cost of 99 probes with the baseline policy, and 8%
unsatisfaction with an average of 17 probes withQuery-
Pong = MFS. In contrast, a fixed extent mechanism such
as Gnutella would require 1000 probes for 6% unsatisfac-
tion, and 540 probes for 8% unsatisfaction – well over an
order of magnitude higher than GUESS. Iterative deepen-
ing is also less efficient than GUESS, given that its control
over extent is coarse-grained; however, we see even limited
control of extent can result in a fairly good balance between
cost and quality.

The reason fixed extent performs so poorly is because
some queries are for popular items while others are for rare
items, and the fixed extent can not adapt to these two ex-
tremes. For many queries that are for popular items, far
more peers receive the query than is necessary to satisfy
the query. However, if the fixed extent is made small, then
the queries for rare items can not be satisfied. Having a flex-
ible extent allows one to probe just as many peers as nec-
essary. In the remainder of this section, we will focus on
the challenges and opportunities afforded by a flexible ex-
tent: response time, and policy selection for efficiency.

Query Efficiency: Here we examine the many options
available for the various policies, with the goal of seeing
which choices for a given policy are the most effective in
the standard usage scenario (i.e. no capacity limits, no ma-
licious behavior). In particular we measure the number of
probes used for queries and the percentage of queries that
go unsatisfied. In terms of the number of probes used for
queries, we distinguish between “useful” probes (those that
get sent to live peers) and “wasted” probes which are sent to
dead peers and therefore have no chance of returning use-
ful information.

To simplify presentation of the results, in the rest of this
section we fix thePingProbe and PingPong policies
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at Random so that we can focus on query behavior. Also,
in each of the graphs presented, the unspecified parameters
use the default values in Table 1. In particular, aside from
the policy being varied in the graph, the other policies are
fixed as Random.

Looking at Figures 9, 10, and 11, our immediate obser-
vation is that choosing different policies can have a dra-

matic impact on performance. For example, in Figure 10 we
see that changing theQueryPong policy can reduce cost
(Probes/Query) by a factor of four. Likewise, in Figure 11
we see that changing theCacheReplacement policy can
reduce cost by over a factor of five. TheQueryProbe pol-
icy does not appear to make as significant a difference in
performance compared to other policy types; changing the
QueryProbe policy results in at most about a 25% change
in cost. Certainly theQueryProbe policy should be cho-
sen appropriately; however, as a first cut we recommend fo-
cusing attention on the other two policy types.

Another initial observation is that there are some policies
with very serious drawbacks. The most obvious of these is
the MRU policy forCacheReplacement ; in Figure 11,
we see that this policy causes a large number of probes to
dead peers. This follows, since the policy evicts recently-
contacted peers from its link cache, leaving the most stale
entries. It appears that using MRU as a mechanism to en-
force fairness does not result in effective search.

Looking at what does provide effective search, we see
that the MFSQueryPong and LFSCacheReplace-
ment policies are the most efficient (Figure 10 and Fig-
ure 11). In fact, used together, these policies result in query
efficiency that is almost an order of magnitude better than
if Random policies were used, thereby highlighting the im-
portance of carefully selecting good policies. The MFS/LFS
policies cause peers to circulate and maintain the identities
of peers who share many files and are therefore more likely
to return results to a query. The results-based policies (MR
and LR) behave similarly, but are not quite as effective, be-
cause the number of results returned is not as accurate an
indicator as number of files shared.

Unsatisfied Queries:Examining Figure 12, we observe
that the proportion of unsatisfied queries is typically in the
range of 6-14 percent. This figure may seem rather high
given that one of the supposed advantages of GUESS is that
it searches more extensively for rare files. This rate is par-
tially an artifact of our simulation parameters; when simu-
lating a network of only 1000 nodes, approximately 6% of



the queries will go unsatisfied even if the entire network is
probed, because some queries are for very rare or nonexis-
tent items. In light of this effective lower bound on the un-
satisfied query rate, we see that policies such as MFS and
Random do quite well.

Response Time:Because each probe is performed se-
quentially, the response time of GUESS is linear in the num-
ber of probes required. Therefore, selecting a good policy is
critical not only for efficiency, but for user experience as
well.

To improve response time, a peer may send outk probes
in parallel. Doing so will only increase the required num-
ber of probes by at mostk � 1, but will decrease response
time by a factor ofk – a good tradeoff for any moderate
value ofk (e.g., 10). For example, whenQueryPong =
MFS, the average number of probes required is 17. If we set
k = 5, and each set of parallel probes is sent out every .2
seconds (according to the GUESS specification [11]), then
the average number of probes is at most 21, meaning aver-
age response time is less than 1 second.

Of course, though average response time may be low,
worst-case response time is still bad. If 1000 probes are re-
quired to satisfy a query, then using the parameters in the
previous example, 50 seconds are required to answer the
query. A more sophisticated solution may adaptively in-
creasek if successive sets of parallel probes are unsuccess-
ful. We leave such a technique to future work.

6.3. Individual Loads

One of the main problems encountered by the original
Gnutella protocol was congestion; therefore, it makes sense
to examine whether GUESS might be susceptible to such
problems as well. While GUESS does not cause queries
to be magnified by a flooding mechanism (as in Gnutella),
there may be other ways in which the limited capacities of
peers come into play. We first investigate how different poli-
cies may lead to a high load for some peers, and then exam-
ine possible ways to remedy such a condition.

Fairness: Figure 13 shows the peers from a simula-
tion run, ranked by number of probes received during their
lifetimes, for different combinations ofQueryProbe and
CacheReplacement policies. The rank is shown on a
logarithmic scale so that the highest-loaded peers are vis-
ible. We see that for MFS/LFS, and MR/LR, the load is
weighted heavily to a small number of peers who do most
of the work. On the other hand the curve for the Ran-
dom/Random policy is much more level, meaning that the
load is spread more evenly across all peers.

Despite the fact that we can choose a more fair policy, it
is not clear that we want to. While the load is spread more
evenly with the Random/Random policy, the total number
of probes sent is over 8 times as many as when MFS/LFS
is used. The probes are received in a more fair manner, but
by peers who are unable to satisfy queries. This wastes both
time and bandwidth for the querying peers as well as the
receiving peers. So, fairness may be trumped by other con-

cerns such as overall efficiency. However, this example does
illustrate that some peers may encounter very high loads.
Therefore, we should determine how the system will react
if the capacity of these peers is exceeded.

Capacity Limits: In order to simulate peers having lim-
ited capacities we introduce the parameterMaxProbe-
sPerSecond , representing the maximum number of
probes that a peer can process within a one-second win-
dow. Any probes received beyond this limit will be dropped.
In the following figures, we refer to these dropped probes as
“refused” probes. Although different peers may have dif-
ferent capacities, we assume that in the interest of fairness,
all peers set the same limit.

Under our default scenario, using aNetworkSize of
1000, aCacheSize of 100, and the defaultQueryProbe
policy of Random, limited capacity barely comes into play.
Any value ofMaxProbesPerSecond greater than 1 re-
sults in less than 1 probe per query being refused (and in
most cases, zero refused probes). Even with a capacity of
just 1 probe per second, the number of unsatisfied queries
increases by less than 2 percent. This is a promising sign
that GUESS is resistant to congestion, which is one of the
goals of the protocol.

We can see the effects of a limited capacity more clearly
in larger networks, and in policies that are less fair, such
as MFS and MR. Figure 14 shows the number of probes
per query for different capacities and network sizes, using
the MR policies. For example, the left-most group of bars in
the figure shows the average number of probes per query for
a network of 500 nodes, with capacity decreasing from left
to right. As the network grows, the number of good probes
and probes to dead peers remain pretty steady. However,
the number of refused probes increases with network size.
There are a few nodes that consistently provide good re-
sults and thus reside in many link caches, and they become
overloaded by the large number of peers who select them as
probe recipients.

Despite the increase in refused probes, however, we see
in Figure 15 that query satisfaction is hardly affected at all.
In our experimentation, despite some of the peers becom-
ing overloaded at times, there were enough other peers in
the network that were capable of satisfying queries, and so
satisfaction rates did not decrease. As the network becomes
larger, there are more peers sending probes, but there are
also more peers to service queries, so the network may be
self-sufficient.

The GUESS policy contains an inherent throttling mech-
anism for overloaded peers which helps in the face of lim-
ited capacity. When a peer gets overloaded, and drops the
probes it cannot handle, the probing nodes will then remove
the overloaded peer from their caches (believing it is dead).
By removing an entry from its cache, a peer will will not
propagate the entry in its Pong messages, which in turn re-
duces the number of probes that the overloaded node might
receive in the near future. A nice feature of this mecha-
nism is that in GUESS, the lack of response from one over-
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Figure 15: Query satisfaction is not
affected by the capacity limits, even
when a significant number of probes
are refused

loaded peer does not unduly interfere with the overall query,
whereas in Gnutella, a drop might prevent hundreds of other
potential recipients from seeing the query.

Nevertheless, GUESS cannot get around the fact that
there are only a small number of peers that tend to share
a large number of files. If a popular file is only located at
a few overloaded nodes, many queries will still go unsat-
isfied. Ultimately, having a high degree of content replica-
tion is the best solution for allowing a file sharing network
to scale successfully; it allows many querying peers to lo-
cate content without placing a huge load on any one or any
handful of nodes. In a public trading network like Gnutella,
where it is difficult to require people to provide content, a
better solution might be to provide incentives for sharing
and replicating content.

6.4. Malicious Attacks

As with any wide-area P2P system, the existence of ma-
licious peers trying to bring down the network is a possi-
bility that must be considered. In most cases, the goal of
a malicious peer is to make the system unusable. There
are two main ways to accomplish this goal. First, the ma-
licious peer may distribute corrupt on inauthentic files. If
many peers serve bad files, then good users may eventu-
ally become frustrated and leave. A second way to under-
mine the system is to attack weaknesses in the protocol it-
self. In Section 3 we already discuss how it is easy to flood
peers in the GUESS protocol, and that some form of pay-
ment or score management is required to counter flooding.
Another way to attack the GUESS protocol is to “poison”
the link caches of good peers. As discussed in Section 6.1, if
many entries in peers’ link caches are dead, then query per-
formance degrades. In the extreme case, the network be-
comes fragmented. If malicious peers return dead IP ad-
dresses, or addresses of other malicious peers, in their Pong
messages, they may be able to inject enough bad entries into
good peers’ caches to bring down the network.

While the issue of document authenticity and reputa-
tion is important, it has been studied in various places
(e.g., [12, 7]), and many techniques developed can be used
on top of the GUESS protocol. Likewise, a fairly straight-
forward solution to flooding is available given the exis-
tence of an efficient score or payment mechanism. Hence,
in this section, we study the robustness of policies to cache-
poisoning. A policy isrobustif query performance does not
significantly degrade as the number of malicious peers in
the system increases.

In addition to the five policies presented in Section 6.2,
we also look at a sixth policy: MR*. As with MR, a peer
P using MR* orders entries according to the number of re-
sults returned in the past, as specified by theNumResfield
of the cache entry. Unlike MR, however, the MR* policy ig-
nores the value ofNumRes(resetting it to 0) if the field was
set by a different peer. As a result, peerP will order en-
tries based solely onP ’s direct experience with those peers,
rather than the history of experience that other peers have
had. While this policy causes potentially useful information
to be lost, it also avoids making bad decisions based on cor-
rupt information.

To poison good peers’ caches, malicious peers will re-
turn either dead IP addresses in their Pong messages
(BadPongBehavior = Dead), or they will return IP ad-
dresses of other malicious peers (BadPongBehavior =
Bad). Note that in the second case, malicious peers must
be colluding. When probed for a query, malicious peers re-
turn no query results; they will only return a corrupt
Pong message. The fraction of the network that is mali-
cious is given byPercentBadPeers .

No collusion.We first focus on the non-colluding case
whereBadPongBehavior = Dead. Figures 16 and 17
show us query performance in terms of average num-
ber of probes per query and satisfaction rate, respec-
tively, as PercentBadPeers is varied. The differ-
ent curves represent different combinations of policy
types; the flatter the curve, the more robust the combi-
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Figure 16: Average probes per
query increases as the number of
malicious peers increases
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Figure 17: Satisfaction de-
creases as the number of mali-
cious peers increases
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Figure 18: Good peers’ link
caches become highly poisoned
as PercentBadPeers increases
for MFS only

nation. For the experiments shown in these figures, we
only vary QueryProbe , QueryPong and CacheRe-
placement policy types; furthermore, for simplicity,
we assume that all three types implement the same pol-
icy (e.g., MR/MR/LR, or Ran/Ran/Ran). Each policy
has the same qualitative effect regardless of the pol-
icy type it is used for; therefore the combinations of policy
types we consider simply highlight the differences be-
tween the policies.

In these figures, we see that the Random, MR and MR*
policies are robust against cache-poisoning with dead IP
addresses, but that MFS is not robust. Although MFS is
by far the best-performing policy when all peers are good
(PercentBadPeers = 0), its performance quickly de-
grades, reaching a 0% satisfaction rate when 20% of all
peers are malicious.

MFS is not robust because it requires that a peer fully
trust other peers. If a peerP receives a pong entry report-
ing that another peer has a particular number of files,P will
trust this information, and has no way of proving it wrong.
Therefore, all dead IP addresses given by bad peers will be
inserted into the link cache. In addition, since bad peers also
purport to have many files, bad peers will also be inserted
into and remain in the link cache. Though the dead IP ad-
dresses will be evicted after a single probe, the malicious
peers remaining in the link cache will generate new dead IP
addresses in their Pong messages, which will again be in-
serted into the good peer’s link cache.

In Figure 18, we see the average number of good, or “un-
poisoned”, cache entries in a good peers’ link cache, as
PercentBadPeers increases. We see that for the MFS
policy only, the number of good entries drops off dramati-
cally as the number of malicious peers grows. Because good
peers no longer have any good entries in their link caches,
they can no longer receive many quality results for their
queries.

At first glance, MR should also have poor robustness
similar to MFS. Because malicious peers report falseNum-
Res values in the Pong message, all the dead IP addresses

will be inserted into a good peer’s link cache, just as with
MFS. However, because theNumRes field is reset after
each query, the malicious peers in the link cache will have
their NumResfield set to 0, since they return no results,
and will therefore likely be evicted within a short period of
time. In contrast, recall that malicious peers remain in the
link cache when MFS is used. Because of this difference,
MR has excellent robustness whenBadPongBehavior =
Dead. As wee see in Figure 18, the average number of “un-
poisoned” cache entries in a good peers’ link cache is bare-
fly affected by the number of malicious peers in the system.

The Random and MR* policies have good robustness as
well. As expected, MR* has worse performance than MR,
because MR* does not take advantage of other peers’ expe-
rience. However, MR* outperforms Random because even
a peer’s limited, local experience with another peer is more
useful than no information at all. Therefore, MR* will con-
sistently outperform Random in terms of efficiency (number
of probes), while maintaining the same effectiveness (satis-
faction rate).

Because MR has the best performance by far for almost
all values ofPercentBadPeers in the non-collusion
scenario, it is the preferred strategy. However, we will see
next that if malicious peers collude, MR is no longer ro-
bust.

Collusion. If malicious peers collude, they can return each
others’ IP addresses in their Pongs, rather than dead IP ad-
dresses. Doing so is much more harmful to the overall sys-
tem, because whereas dead IP addresses are always evicted
after a single probe, IP addresses of malicious peers are not.
Malicious peers simply appear as good peers who happen
to return no query results. In addition, when probed, mali-
cious peers will return the IP addresses of other malicious
peers, which will then be inserted into the good peer’s link
cache. In contrast, because dead peers do not respond, they
can not further “poison” the good peer’s cache.

In Figures 19 and 20, we see the robustness of the dif-
ferent policies asPercentBadPeers is varied. We set
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Figure 19: Average probes per
query increases as the number of
malicious peers increases
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Figure 20: Satisfaction de-
creases as the number of mali-
cious peers increases
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Figure 21: Good peers’ link
caches become highly poisoned
as PercentBadPeers increases
for MR and MFS

BadPongBehavior = Bad to model the case where ma-
licious peers collude and return the addresses of other ma-
licious peers in their Pongs. In these figures, we see that
again, the MFS policy has the best performance when there
are no malicious peers in the network. However, MFS is
also not robust; when 20% of the network is malicious
(PercentBadPeers = 20), 0% of the queries are satis-
fied (see Figure 20).

Likewise, MR has very poor robustness as well. Unlike
in the non-colluding case, whereBadPongBehavior =
Dead, in these figures we see that both the average num-
ber of probes, and the unsatisfaction rate, increase rapidly
asPercentBadPeers increases. Like MFS, when 20%
of the network is malicious, MR yields 0% satisfied queries.
This result may be surprising at first, because with MR,
malicious peers are quickly evicted from good peers’ link
caches. Since malicious peers return no results, after one
probe, theNumResfield for a malicious peer’s is set to 0,
making it a target for cache replacement. However, because
probing a malicious peer once bringsPongSize new ma-
licious peers into the link cache, malicious peers enter the
cache at a higher rate than at which they are evicted. Hence,
even with the MR policy, good peers’ caches remain highly
“poisoned”. We can corroborate this theory with Figure 21,
which shows the average number of “unpoisoned” cache en-
tries in a good peers’ link cache asPercentBadPeers
increases. As shown in this figure, good peers’ link caches
become highly poisoned (i.e., the number of good entries is
small) asPercentBadPeers increases, for both the MR
and MFS policies.

The Random and MR* policies once again exhibit good
robustness, because they do not rely on information pro-
vided by other peers (number of files, number of results)
to rank their cache entries. Furthermore, as before, MR*
outperforms Random significantly, because it takes advan-
tage of trusted, secure knowledge on the past performance
of a given peer. However, although MR* is more robust than
MR or MFS, when there are few malicious peers in the sys-
tem, the performance of MR* is poor compared to that of

MR and MFS. For example, atPercentBadPeers = 0,
MR* requires 17 probes on average per query, while MFS
requires just 4 probes, and MR requires 7.

In summary, the MR* policy is the best overall choice
when malicious peers are a possibility. MR* outperforms
Random consistently, but is much more robust than MR or
MFS. Ideally, however, peers can learn to switch between
MR and MR* if malicious peers are present. When few ma-
licious peers are present, MR should be the policy of choice.
If many malicious peers are present, the peer should use
MR*. Although proving that a peer is malicious may be dif-
ficult, detecting malicious peers can be accomplished us-
ing heuristics – for example, if a group of peers constantly
include each other in pongs, or if a peer consistently re-
turns many dead IP addresses in its Pong. Hence,detection
of malicious peers, andadaptingpolicies based on this in-
formation, remains an interesting and important area of fu-
ture work. The related issue of cache-poisoning prevention
(without actually detecting bad peers) is addressed in [9].

7. Conclusion

In this paper, we promote the concept of non-forwarding
search mechanisms as a viable alternative to popu-
lar forwarding-based mechanisms such as Gnutella.
Non-forwarding mechanisms, exemplified by the GUESS
protocol, can achieve very efficient query performance,
but must be carefully deployed. In particular, in this pa-
per we demonstrate how thepoliciesused to determine the
order of probes, pongs and cache replacement have a dra-
matic effect on performance and robustness. From our ex-
periments, we conclude that the MR policy presents the
best tradeoff between efficiency and robustness, while scal-
ing fairly well with network size. Therefore, our recom-
mendation for a first-generation implementation of GUESS
would be to use the MR policy. In the future, we would like
to further explore how to make the protocol adapt to chang-
ing network conditions, and how to defend against selfish
and malicious peers.
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