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We identify crucial design issues in building a distributed inverted index for a large collection
of Web pages. We introduce a novel pipelining technique for structuring the core index-building
system that substantially reduces the index construction time. We also propose a storage scheme
for creating and managing inverted files using an embedded database system. We suggest and

compare different strategies for collecting global statistics from distributed inverted indexes. Fi-
nally, we present performance results from experiments on a testbed distributed Web indexing
system that we have implemented.
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1. INTRODUCTION

Various access methods have been developed to support efficient search and retrieval
over text document collections. Examples include suffix arrays [Manber and Myers
1990], inverted files or inverted indexes [Salton 1989; Witten et al. 1999], and
signature files [Faloutsos and Christodoulakis 1984]. Inverted files have traditionally
been the index structure of choice on the Web. Commercial search engines use
custom network architectures and high-performance hardware to achieve sub-second
query response times using such inverted indexes.1

An inverted index over a collection of Web pages consists of a set of inverted
lists, one for each occurring word (or index term). The inverted list for a term is a
sorted list of locations where the term appears in the collection. A location consists
of a page identifier and the position of the term within the page. When it is not
necessary to track each term occurrence within a page, a location will include just a
page identifier (and optionally the number of occurrences within the page). Given
an index term w, and a corresponding location l, we refer to the pair (w, l) as a
posting for w.

1Even though the Web link structure is being utilized to produce high-quality results, text-based
retrieval continues to be the primary method for identifying the relevant pages. In most commercial
search engines, a combination of text and link-based methods are employed.

A shorter version of this paper will appear in the Proceedings of the 10th Intl. WWW Conference,
Hong Kong, May 2001.
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Conceptually, building an inverted index involves processing each page to extract
postings, sorting the postings first on index terms and then on locations, and finally
writing out the sorted postings as a collection of inverted lists on disk. When the
collection is small and indexing is a rare activity, optimizing index-building is not
as critical as optimizing run-time query processing and retrieval. However, with a
Web-scale index, index build time also becomes a critical factor for two reasons:

Scale and growth rate. The Web is so large and growing so rapidly [Lawrence
and Giles 1999; Inktomi 2000] that traditional build schemes become unmanage-
able, requiring huge resources and taking days to complete (and becoming more
vulnerable to system failures). As a measure of comparison, the 40 million page
(220 GB) WebBase repository [Hirai et al. 2000] represents only about 4% of the
estimated size of the publicly indexable Web as of January 2000 [Inktomi 2000],
but is already larger than the 100 GB very large TREC-7 collection [Hawking and
Craswell 1998], the benchmark for large IR systems.

Rate of change. Since the content on the Web changes extremely rapidly [Cho
and Garcia-Molina 2000], there is a need to periodically crawl the Web and update
the inverted index. Indexes can either be updated incrementally or periodically
rebuilt, after every crawl. With both approaches, the key challenge is to handle
the large whole-scale changes commonly observed between successive crawls of the
Web. For efficiency and simplicity, most commercial Web search systems employ
the rebuilding approach [Burrows 2000]. In this case, it is critical to build the index
rapidly to quickly provide access to the new data.

To study and evaluate index building in the context of the special challenges
imposed by the Web, we have implemented a testbed system that operates on a
cluster of nodes (workstations). As we built the testbed, we encountered several
challenging problems that are typically not encountered when working with smaller
collections. In this paper we report on some of these issues and the experiments we
conducted to optimize build times for massive collections. In particular:

—We propose the technique of constructing a software pipeline on each indexing
node to enhance performance through intra-node parallelism (Section 3).

—We argue that the use of an embedded database system (such as The Berkeley
Database [Olson et al. 1999]) for storing inverted files has a number of important
advantages. We propose an appropriate format for inverted files that makes
optimal use of the features of such a database system (Section 4).

—Any distributed system for building inverted indexes needs to address the issue
of collecting global statistics (e.g., inverse document frequency - IDF ). We exam-
ine different strategies for collecting such statistics from a distributed collection
(Section 5).

—For each of the above issues, wherever appropriate, we present experiments and
performance studies to compare the alternatives.

We emphasize that the focus of this paper is on the actual process of building
an inverted index and not on using this index to process search queries. As a
result, we do not address issues such as ranking functions, relevance feedback,
query expansion, [Salton 1989; Witten et al. 1999], and distributed query processing
[Jeong and Omiecinski 1995; Tomasic and Garcia-Molina 1993b].
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We also wish to clarify that the focus of this paper is not on presenting a com-
prehensive performance or feature-list comparison of our testbed indexing system
with existing systems for indexing Web and non-Web collections. Rather, we use
our experience with the testbed to identify some key performance issues in build-
ing a Web-scale index and propose generic techniques that are applicable to any
distributed inverted index system.

2. TESTBED ARCHITECTURE

Our testbed system for building inverted indexes operates on a distributed shared-
nothing architecture consisting of a collection of nodes connected by a local area
network. We identify three types of nodes in the system (Figure 1):

Distributors. These nodes store the collection of Web pages to be indexed.
Pages are gathered by a Web crawler and stored in a repository distributed across
the disks of these nodes [Hirai et al. 2000].

Indexers. These nodes execute the core of the index building engine.
Query servers. Each of these nodes stores a portion of the final inverted index

and an associated lexicon. The lexicon lists all the terms in the corresponding
portion of the index and their associated statistics. Depending on the organization
of the index files, some or all of the query servers may be involved in answering a
search query.

Note that many traditional information retrieval (IR) systems do not employ such
a 3-tier architecture for building inverted indexes. In those systems, the pages or
documents to be indexed are placed on disks directly attached to the machines that
build the index. However, a 3-tier architecture provides significant benefits in the
context of a Web search service. Note that a Web search service must perform three
resource intensive tasks — crawling, indexing, and querying — simultaneously.
Even as existing indexes are used to answer search queries, newer indexes (based
on a more recent crawl) must be constructed, and in parallel, the crawler must
begin a fresh crawl. A 3-tier architecture clearly separates these three activities
by executing them on separate banks of machines, thus improving performance.
This ensures that pages are indexed and made available for querying as quickly as
possible, thereby maximizing index freshness.
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Overview of indexing process. The inverted index is built in two stages. In
the first stage, each distributor node runs a distributor process that disseminates
the collection of Web pages to the indexers. Each indexer receives a mutually
disjoint subset of pages and their associated identifiers. The indexers parse and
extract postings from the pages, sort the postings in memory, and flush them to
intermediate structures on disk.

In the second stage, these intermediate structures are merged together to create
one or more inverted files and their associated lexicons. An (inverted file, lexicon)
pair is generated by merging a subset of the sorted runs. Each (inverted file, lexicon)
pair is transferred to one or more query servers. In this paper, for simplicity, we
assume that each indexer builds only one such pair.

Distributed inverted index organization. In a distributed environment,
there are two basic strategies for distributing the inverted index over a collection
of query servers [Martin et al. 1986; Ribeiro-Neto and Barbosa 1998; Tomasic and
Garcia-Molina 1993b]. One strategy is to partition the document collection so that
each query server is responsible for a disjoint subset of documents in the collection
(called local inverted files in [Ribeiro-Neto and Barbosa 1998]). The other option
is to partition based on the index terms so that each query server stores inverted
lists only for a subset of the index terms in the collection (called global inverted files
in [Ribeiro-Neto and Barbosa 1998]). Performance studies described in [Tomasic
and Garcia-Molina 1993b] indicate that for large collections, the local inverted file
organization uses system resources effectively and provides good query throughput
in most cases. Hence, our testbed employs the local inverted file organization.

Testbed environment. Our indexing testbed uses a large repository of Web
pages provided by the WebBase project [Hirai et al. 2000] as the test corpus for
the performance experiments. The storage manager of the WebBase system re-
ceives pages from the Web crawler [Cho and Garcia-Molina 2000] and populates
the distributor nodes. The indexers and the query servers are single processor PCs
with 350–500 MHz processors, 300–500 MB of main memory, and equipped with
multiple IDE disks. The distributor nodes are dual-processor machines with SCSI
disks housing the repository. All the machines are interconnected by a 100 Mbps
Ethernet LAN.

3. PIPELINED INDEXER DESIGN

The core of the indexing system is the index-builder process that executes on each
indexer. The input to the index-builder process is a sequence of Web pages and
their associated identifiers.2 The output of the index-builder is a set of sorted runs.
Each sorted run contains postings extracted from a subset of the pages received by
the index-builder.

The process of generating these sorted runs can logically be split into three phases,
as illustrated in Figure 2. We refer to these phases as loading, processing, and
flushing. During the loading phase, some number of pages are read from the input
stream. The processing phase involves two steps. First, the pages are parsed to
remove HTML tagging, tokenized into individual terms, and stored as a set of
postings in a memory buffer. In the second step, the postings are sorted in-place,

2The URLs are normally replaced by numeric identifiers for compactness.
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first by term, and then by location. During the flushing phase, the sorted postings
in the memory buffer are saved on disk as a sorted run. These three phases are
executed repeatedly until the entire input stream of pages has been consumed.

Loading, processing and flushing tend to use disjoint sets of system resources.
Processing is obviously CPU-intensive, whereas flushing primarily exerts secondary
storage, and loading can be done directly from the network, tape, or a separate
disk. Therefore, indexing performance can be improved by executing these three
phases concurrently. Since the execution order of loading, processing and flushing
is fixed, these three phases together form a software pipeline.

Figure 3 illustrates the benefits of pipelined parallelism during index construc-
tion. The figure shows a portion of an indexing process that uses three concurrent
threads, operates on three reusable memory buffers, and generates six sorted runs
on disk.

The key issue in pipelining is to design an execution schedule for the differ-
ent indexing phases that will result in minimal overall running time (also called
makespan in the scheduling literature). Our problem differs from a typical job
scheduling problem [Chakrabarti and Muthukrishnan 1996] in that we can vary the
sizes of the incoming jobs, i.e., in every loading phase we can choose the number
of pages to load. In the rest of this section, we describe how we make effective
use of this flexibility. First, we derive, under certain simplifying assumptions, the
characteristics of an optimal indexing pipeline schedule and determine the theoret-
ical speedup achievable through pipelining. Next, we describe experiments that
illustrate how observed performance gains differ from the theoretical predictions.
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3.1 Theoretical Analysis

Let us consider an indexer node that has one resource of each type: a single CPU,
a single disk, and a single network connection over which to receive the pages. How
should we design the pipeline shown in Figure 2 to minimize index construction
time?

First, notice that executing concurrent phases of the same kind, such as two
disk flushes, is futile, since we have only one resource of each type. Consider an
index-builder that uses N executions of the pipeline to process the entire collection
of pages and generate N sorted runs. By an execution of the pipeline, we refer to
the sequence of three phases — loading, processing, and flushing — that transform
some set of pages into a sorted run. Let Bi, i = 1 . . .N , be the buffer sizes used
during these N executions. The sum

∑N
i=1 Bi = Btotal is fixed for a given amount

of text input and represents the total size of all the postings extracted from the
pages. Our aim is to come up with a way of choosing the Bi values so as to minimize
the overall running time.

Now, loading and flushing take time linear in the size of the buffer. Processing
time has a linear component (representing time for removing HTML and tokenizing)
and a linear-logarithmic component (representing sorting time). Let li = λBi,
fi = ϕBi, and pi = δBi+σBi log Bi represent the durations of the loading, flushing,
and processing phases for the ith execution of the pipeline.3 For large N , the overall
indexing time is determined by the scarcest resource (the CPU, in Figure 3) and
can be approximated by Tp = max{∑N

i=1 li,
∑N

i=1 pi,
∑N

i=1 fi}.
It can be shown (see A) that Tp is minimized when all N pipeline executions use

the same buffer size B, where B = B1 . . . = BN = Btotal

N . Let l = λB, f = ϕB,
and p = δB + σB log B be the durations of the loading, processing, and flushing
phases, respectively. We must choose a value of B that maximizes the speedup
gained through pipelining.

We calculate speedup as follows. Pipelined execution takes time Tp = N max(l, p, f)
(6p in Figure 3) and uses 3 buffers, each of size B. In comparison, sequential ex-
ecution using a single buffer of size 3B will take time Ts = N

3 (l′ + p′ + f ′), where
l′ = λ(3B), f ′ = ϕ(3B), and p′ = δ(3B) + σ(3B) log (3B). Thus, in a node with a
single resource of each type, the maximal theoretical speedup that we can achieve
through pipelining is (after simplification):

θ =
Ts

Tp
=

(l + p + f)
max(l, p, f)

+
σ log 3

max(λ, ϕ, δ + σ log B)
= θ1 + θ2

Now, θ1 ≥ 1 whereas θ2 ≤ σ log 3
max(λ,ϕ) << 1 for typical values of λ, ϕ, and σ (refer

to Table 1). Therefore, we ignore θ2 and concentrate on choosing the value of B
that maximizes θ1. The maximum value of θ1 is 3, which is reached when l = p = f ,
i.e., when all three phases are of equal duration. We cannot guarantee l = f since

3λ = λ1λ2, where λ1 is the rate at which pages can be loaded into memory from the network and
λ2 is the average ratio between the size of a page and the total size of the postings generated from
that page.
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Constant Value

λ 1.26 × 10−3

ϕ 4.62 × 10−4

δ 6.74 × 10−4

σ 2.44 × 10−5

Table 1. Measured constants

that requires λ = ϕ. However, we can maximize θ1 by choosing p = max(l, f) so
that θ1 = 2 + min(l,f)

max(l,f) .
For example, in Figure 3, the ratio between the phases is l : p : f = 3 : 4 : 2. Thus,

θ1 for this setting is 3+4+2
4 = 2.25. We could improve θ1 by changing the ratio to

3:3:2, so that θ1 = 2+ 2
3 ≈ 2.67. In general, setting δB+σB log B = max{λB, ϕB},

we obtain

lg B =
max{λ, ϕ} − δ

σ
(1)

This expression represents the size of the postings buffer that must be used to
maximize the pipeline speedup, on an indexer with a single resource of each type.
If we use a buffer of size less than the one specified by equation 1, loading or
flushing (depending on the relative magnitudes of λ and ϕ) will be the bottleneck
and the processing phase will be forced to periodically wait for the other phases
to complete. An analogous effect will take place for buffer sizes greater than the
one prescribed by equation 1. We can generalize equation 1 for an indexer with c
identical processors, d identical disks, and i input streams, to obtain

lg B =
max{λdµ/ie, ϕdµ/de} − δdµ/ce

σdµ/ce , (2)

where µ = max{c, d, i}.
3.2 Experimental Results

To study the impact of the pipelining technique on indexing performance, we con-
ducted a number of experiments on our testbed, using a single indexer supplied
with a stream of Web pages from a distributor.

We first ran the index-builder process in measurement mode, where we recorded
the execution times of the various phases and determined the values of λ, ϕ, σ, and
δ (Table 1). Using the values of these constants in equation 1, we evaluate B to be
16 MB. Therefore, the optimal total size of the postings buffers, as predicted by
our theoretical analysis, is 3B = 48 MB.

Impact of buffer size on performance. Figure 4 illustrates how the perfor-
mance of the index-builder process varies with the size of the buffer. It highlights
the importance of the analytical result as an aid in choosing the right buffer size.
The optimal total buffer size based on actual experiments turned out be 40 MB.
Even though the predicted optimum size differs slightly from the observed opti-
mum, the difference in running times between the two sizes is less than 15 minutes
for a 5 million page collection. For buffer sizes less than 40, loading proved to be the
bottleneck, and both the processing and flushing phases had to wait periodically
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for the loading phase to complete. However, as the buffer size increased beyond 40,
the processing phase dominated the execution time as larger and larger buffers of
postings had to be sorted.

Performance gain through pipelining. Figure 5 shows how pipelining im-
pacts the time taken to process and generate sorted runs for a variety of input sizes.
Note that for small collections of pages, the performance gain through pipelining,
though noticeable, is not substantial. This is because small collections require very
few pipeline executions and the overall time is dominated by the time required
at startup (to load up the buffers) and shutdown (to flush the buffers). This is
one of the reasons that pipelined index building has not received prior attention
as most systems dealt with smaller collections. However, as collection sizes in-
crease, the gain becomes more significant and for a collection of 5 million pages,
pipelining completes almost 1.5 hours earlier than a purely sequential implemen-
tation. Our experiments showed that, in general, for large collections, a sequential
index-builder is about 30–40% slower than a pipelined index-builder. Note that the
observed speedup is lower than the speedup predicted by the theoretical analysis
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Collection size Speedup in generating sorted runs Overall speedup including merging
(seconds) (seconds)

100,000 96 76
500,000 584 550

1,000,000 1264 1134
2,000,000 2505 2265

Table 2. Overall speedup after including time for merging sorted runs

described in the previous section. That analysis was based on an “ideal pipeline,”
in which loading, processing and flushing do not interfere with each other in any
way. In practice, however, network and disk operations do use processor cycles and
access main memory. Hence, any two concurrently running phases, even of different
types, do slow down each other.

Note that for a given total buffer size, pipelined execution generates sorted runs
that are approximately 3 times smaller than those generated by a sequential indexer.
Consequently, 3 times as many sorted runs will need to be merged in the second
stage of indexing. However, as indicated in Table 2, our experiments indicate that
even for very large collection sizes, the potential increase in merging time is more
than offset by the time gained in the first stage through pipelining. We expect that
as long as there is enough memory at merge time to allocate buffers for the sorted
runs, merging performance will not be significantly affected.

4. MANAGING INVERTED FILES IN AN EMBEDDED DATABASE SYSTEM

When building inverted indexes over massive Web-scale collections, the choice of an
efficient storage format is particularly important. There have traditionally been two
approaches to storing and managing inverted files; using a custom implementation,
or by leveraging existing relational or object data management systems [Brown
et al. 1994; Gorssman and Driscoll 1992].

The advantage of a custom implementation is that it enables very effective opti-
mizations tuned to the specific operations on inverted files (e.g., caching frequently
used inverted lists, compressing rarely used inverted lists using expensive methods
that may take longer to decompress). When leveraging existing data management
systems, such fine-grained control over the implementation may not be possible.
Also, there is likely to be extra overhead in using the higher level of abstraction
provided by the data management system. On the other hand, there is opportunity
for reduction in development time and complexity. However, the challenge lies in
designing a scheme for storing inverted files that makes optimal use of the storage
structures provided by the data management system. The storage scheme must
be space efficient and must ensure that the basic lookup operation on an inverted
file (i.e., retrieving some or all of the inverted list for a given index term) can be
efficiently implemented using the access methods of the data management system.

Note that many custom inverted file structures, such as those described in [Moffat
and Zobel 1996; Anh and Moffat 1998; Brown 1995], could potentially use database
systems for managing the opaque data blocks of their index. However, such im-
plementations do not fully exploit the capabilities of the underlying system. For
instance, such applications would typically need to employ several types of data
blocks, as well as custom link structures and access methods superimposed on top
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of the underlying database system. For example, [Brown 1995] reports on the use of
a persistent object store for managing inverted files. The implementation described
there, uses many different kinds of blocks; for storing headers, directories, location
lists, etc. Basic lookup operations in that implementation translate into several
traversals in the underlying object store.

In this section we present and compare different storage schemes for managing
large inverted files in an embedded database system. The schemes we suggest use
uniform block structures and exploit the native access methods and features of
the database system, as much as possible. To test our schemes, we used a freely
available embedded database system called Berkeley DB [Olson et al. 1999], that
is widely deployed in many commercial applications.

An embedded database is a library or toolkit that provides database support for
applications through a well-defined programming API. Unlike traditional database
systems that are designed to be accessed by applications, embedded databases are
linked (at compile-time or run-time) into an application and act as its persistent
storage manager. They provide device-sensitive file allocation, database access
methods (such as B-trees and hash indexes), and optimized caching, with optional
support for transactions, locking, and recovery. They also have the advantage of
much smaller footprints compared to full-fledged client-server database systems.

In the following, we briefly the sketch the capabilities of Berkeley DB and propose
a B-tree based inverted file storage scheme called the mixed-list scheme. We quali-
tatively and quantitatively compare the mixed-list scheme with two other schemes
for storing inverted lists in Berkeley DB databases.

4.1 Rationale and Implementation

Berkeley DB provides a programming library for managing (key,value) pairs,
both of which can be arbitrary binary data of any length. It offers four access
methods, including B-trees and linear hashing, and supports transactions, locking,
and recovery.4 We chose to use the B-tree access method since it efficiently supports
prefix searches (e.g., retrieve inverted lists for all terms beginning with “pre”) and
has higher reference locality than hash-based indexes.

The standard organization of a B-tree based inverted file involves storing the
index terms in the B-tree along with pointers to inverted lists that are stored sep-
arately. Such an organization, though easy to implement using Berkeley DB, does
not fully utilize the capabilities of the database system. Since Berkeley DB effi-
ciently handles arbitrary sized keys and values, it is more efficient to store both the
index terms and their inverted lists within the database. This enables us to lever-
age Berkeley DB’s sophisticated caching schemes while retrieving large inverted
lists with a minimum number of disk operations.

Storage schemes. The challenge is to design an efficient scheme for organizing
the inverted lists within the B-tree structure. We considered three schemes:

(1) Full list: The key is an index term, and the value is the complete inverted list
for that term.

(2) Single payload: Each posting (an index term, location pair) is a separate key.5

4All these features can be turned off, if desired, for efficiency.
5Storing the indexing term in the key and a single location in the value is not a viable option as
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The value can either be empty or may contain additional information about
the posting.

(3) Mixed list: The key is again a posting, i.e., an index term and a location.
However, the value contains a number of successive postings in sorted order,
even those referring to different index terms. The postings in the value field are
compressed and in every value field, the number of postings is chosen so that
the length of the field is approximately the same. Note that in this scheme, the
inverted list for a given index term may be spread across multiple (key,value)
pairs.

In implementing the mixed-list storage scheme, any well-known encoding tech-
nique [Witten et al. 1999] can be used to pack postings efficiently into the value
field, as long as the size of the value field is approximately kept constant. For in-
stance, in our implementation, we used an encoding scheme, adapted from [Witten
et al. 1999], in which successive index terms in the value field are represented using
prefix compression, and successive location identifiers are represented in terms of
their numerical differences6.

Figure 6 illustrates how the mixed-list storage scheme, using this encoding, is
used to store inverted lists. For simplicity, in this example, we assume that no ad-
ditional information is maintained along with each posting. However, in our actual
implementation, we allocated a 2-byte payload field, to store extra posting-level in-
formation. The top half of the figure depicts inverted lists for four successive index
terms and the bottom half shows how they are stored as (key,value) pairs using
the mixed-list scheme. For example, the second (key,value) pair in the figure,
stores the set of postings (cat,311), (cat,328), (catch,103), (catcher,147),
etc., with the first posting stored in the key and the remaining postings stored in
the value. As indicated in the figure, the index terms in the value field are prefix
compressed and location identifiers are represented as differences. For example, the
posting (cat,328) is represented by the sequence of entries 3 <an empty field> 17,

the locations for a given term are not guaranteed to be in sorted order.
6These numerical differences are in turn compressed using the ASN.1 Basic Encoding Rules spec-
ification [CCITT 1988]
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Scheme Index size Zig-zag joins Hot updates

single payload −− + +
full list +− − −
mixed list +− +− +−

Table 3. Comparison of storage schemes

where 3 indicates the length of the common prefix between the words for postings
(cat,311) and (cat,328), the <empty field> indicates that both postings refer
to the same word, and 17 is the difference between the locations 328 and 311. Sim-
ilarly, the posting (catch,103) is represented by the sequence of entries 3 ch 103,
where 3 is the length of the common prefix of cat and catch, ch is the remaining
suffix for catch, and 103 is the location.

A qualitative comparison of these storage schemes is summarized in Table 3. In
this table, the symbols “++”, “+”, “+−”, “−”, and “−−” denote, in decreasing
order, qualitative goodness measures for each scheme relative to the performance
metrics.

Index size. The crucial factors determining index size are the number of in-
ternal pages (a function of the height of the B-tree) and the number of overflow
pages.7 In the single payload scheme, every posting corresponds to a new key, re-
sulting in rapid growth in the number of internal pages of the database. For large
collections, the database size becomes prohibitive even though Berkeley DB em-
ploys prefix compression on keys. At query time, many performance-impeding disk
accesses are needed. The situation is significantly better with the full list scheme.
A database key is created only for every distinct term, and the value field can be
well compressed. However, many terms occur only a few times in the collection
whereas others may occur in almost every page. Due to large variations in the size
of the value field, many overflow pages are created in the database. In comparison,
with the mixed list scheme, the length of the value field is approximately constant.
This limits the number of overflow pages. Moreover, the total number of keys (and
hence the number of internal pages) can be further reduced by choosing a larger size
for the value field. However, since the value field can contain postings of different
index terms, it is not compressed as well as with full lists.

Zig-zag joins. The ability to selectively retrieve portions of an inverted list
may be very useful when processing conjunctive search queries on an inverted file
[Moffat and Zobel 1996]. For example, consider the query green AND catchflies.
The term green occurs on the Web in millions of documents, whereas catchflies
produces only a couple of dozen hits. A zig-zag join [Garcia-Molina et al. 2000]
between the inverted lists for green and catchflies allows us to answer the query
without reading out the complete inverted list for green. The single payload scheme
provides the best support for zig-zag joins as each posting can be retrieved individ-
ually. In the full list scheme, the entire list must be retrieved to compute the join,
whereas with the mixed list scheme, access to specific portions of the inverted list
is available. For example, in Figure 6, to retrieve locations for cat starting at 311,
we do not have to read the portion of the list for locations 100–280.

7Since values can be of arbitrary length, Berkeley DB uses overflow pages to handle large value
fields.
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Obviously, the benefit of partial retrieval decreases when only large portions of
inverted lists can be accessed individually [Moffat and Zobel 1996]. However, as we
demonstrate in the next section, the optimal time for retrieving inverted lists in the
mixed-list scheme is achieved for relatively small sizes of the value field (e.g., 512
bytes in Figure 8). This indicates that with the mixed-list scheme, a query processor
can indeed effectively exploit zig-zag joins, reduce the amount of information to be
read from disk, and thereby achieve improved performance.

Hot updates. Hot updates refers to the ability to modify the index at query
time. This is useful when very small changes need to be made to the index between
two successive index rebuilds. For example, Web search services often allow users
and organizations to register their home pages with their service. Such additions can
be immediately accommodated in the index using the hot update facility, without
having to defer them till the index is next rebuilt.

In all three schemes, the concurrency control mechanisms of the database can
be used to support such hot updates while maintaining consistency. However, the
crucial performance factor is the length of the inverted list that must be read,
modified, and written back to achieve the update. Since we limit the length of the
value field, hot updates are faster with mixed lists than with full lists. The single
payload scheme provides the best update performance as individual postings can
be accessed and modified.

Notice that all three schemes significantly benefit from the fact that the postings
are first sorted and then inserted. Inserting keys into the B-tree in a random order
negatively affects the page-fill factor, and expensive tree reorganization is needed.
Berkeley DB is optimized for sorted insertions so that high performance and a
near-one page-fill factor can be achieved in the initial index construction phase.

In the following section, we present a quantitative comparison of storage and
retrieval efficiency for the three storage schemes discussed in this section.

4.2 Experimental Results

The experimental data presented in this section was obtained by building an in-
verted index over a collection of 2 million Web pages. The collection contains
4.9 million distinct terms with a total of 312 million postings.8

Figure 7 illustrates how the choice of the storage scheme affects the size of the
inverted file. It shows the variation of index size with value field size, when using
the mixed-list scheme. The dotted line represents the index size when the same
database was stored using the full-list scheme. Note that since the value field size
is not applicable to the full-list scheme, the graph is just a horizontal line. The single
payload scheme can be viewed as an extreme case of the mixed scheme with value
field being empty. Figure 7 shows that both very small and very large value fields
have an adverse impact on index size. In the mixed list scheme, very small value
fields will require a large number of internal database pages (and a potentially taller
B-tree index) to accommodate all the postings. On the other hand, very large value
fields will cause Berkeley DB to allocate a large number of overflow pages which in
turn lead to a larger index. As indicated in the figure, a value field size of 512 bytes
provided the best balance between these two effects. The full-list scheme results in

8Only one posting was generated for all the occurrences of a term in a page.
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Number of pages Input size Index size Index size
(million) (GB) (GB) (%age)

0.1 0.81 0.04 6.17
0.5 4.03 0.24 6.19
2.0 16.11 0.99 6.54
5.0 40.28 2.43 6.33

Table 4. Mixed-list scheme index sizes

a moderate number of both overflow pages and internal database pages. However,
it still requires around 30% more storage space than the optimal mixed-list inverted
file. For all of the examined storage schemes, the time to write the inverted file to
disk was roughly proportional to the size of the file.

Table 4 shows how the index size (using the mixed-list scheme) varies with the
size of the input collection. The index sizes listed in Table 4 include the sum of
the sizes of the inverted files and the associated lexicons. The numbers for Table 4
were generated by using mixed-lists with the optimal value field size of 512 bytes
derived from Figure 7. Table 4 shows that the mixed-list storage scheme scales
very well to large collections. The size of the index is consistently below 7% the
size of the input HTML text. This compares favorably with the sizes reported for
the VLC2 track (which also used crawled Web pages) at TREC-7 [Hawking and
Craswell 1998] where the best reported index size was approximately 7.7% the size
of the input HTML. Our index sizes are also comparable to other recently reported
sizes for non-Web document collections using compressed inverted files [Anh and
Moffat 1998]. Note that exact index sizes are dependent on the type and amount
of information maintained along with each posting (e.g., information to handle
proximity queries). However, we believe that the 2-byte payload field used in our
implementation can accommodate most posting-level information normally stored
in inverted indexes.

Figure 8 illustrates the effect of value field size on inverted list retrieval time.
Once again, the dotted horizontal line represents the retrieval time when using
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the fixed-list scheme. Figure 8 was produced by generating uniformly distributed
query terms and measuring the time9 required to retrieve the entire inverted list
for each query term. The optimal retrieval performance in the mixed-list scheme is
achieved when the value field size is between 512 and 1024 bytes. Notice that (from
Figures 7 and 8) a value field size of 512 bytes results in maximum storage as well as
maximum retrieval efficiency for the mixed-list scheme. Figure 8 also indicates that
both the fixed-list and mixed-list (with optimal value field size) schemes provide
comparable retrieval performance.

Note that Figure 8 only measures the raw inverted list retrieval performance of
the different storage schemes. True query processing performance will be affected by
other factors such as caching (of inverted lists), use of query processing techniques
such as zig-zag joins, and the distribution of the query terms.

5. COLLECTING GLOBAL STATISTICS

Most text-based retrieval systems use some kind of collection-wide information to
increase effectiveness of retrieval [Viles and French 1995]. One popular example is
the inverse document frequency (IDF) statistics used in ranking functions. The IDF
of a term is the inverse of the number of documents in the collection that contain
that term. If query servers have only IDF values over their local collections, then
rankings would be skewed in favor of pages from query servers that return few
results.

Depending on the particular global statistic, the ranking function, and the nature
of the collection, it may or may not be necessary for a statistic to be computed
accurately. In some cases, it suffices to estimate the global statistic from the lo-
cal values at the individual query servers, or from sampling (see related work in
Section 6). However, in this section, we analyze the problem of gathering accurate
collection-wide information (with minimum overhead), for the cases where this is
required. We present two techniques that are capable of gathering different types

9A warming-up period was allowed before the measurements to fill the database and file system
cache.
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of collection-wide information, though here we focus on the problem of collecting
term-level global statistics, such as IDF values.10

5.1 Design

Some authors suggest computing global statistics at query time. This would re-
quire an extra round of communication among the query servers to exchange local
statistics. This communication adversely impacts query processing performance, es-
pecially for large collections spread over many servers. Since query response times
are critical, we advocate precomputing and storing statistics at the query servers
during index creation.

Our approach is based on using a dedicated server, known as the statistician, for
computing statistics. Having a dedicated statistician allows most computation to
be done in parallel with other indexing activities. It also minimizes the number
of conversations among servers, since indexers exchange statistical data with only
one statistician. Local information is sent to the statistician at various stages
of index creation, and the statistician returns global statistics to the indexers in
the merging phase. Indexers then store the global statistics in the local lexicons.
A lexicon consists of entries of the form (term, term-id, local-statistics, global-
statistics), where the terms stored in a lexicon are only those terms occurring in
the associated inverted file (Section 2).

In order to avoid extra disk I/O, local information is sent to the statistician only
when it is already in memory. We have identified two phases in which this occurs:
flushing — when sorted runs are written to disk, and merging — when sorted runs
are merged to form inverted lists and the lexicon. Sending information in these two
phases leads to two different strategies with various tradeoffs which are discussed in
the next section. We note here only that by sending information to the statistician
in these phases without additional I/O’s, a huge fraction of the statistic collection
is eliminated.

Sending information to the statistician is further optimized by summarizing the
postings. In both identified phases, postings occur in at least partially sorted
order, i.e., multiple postings for a term pass through memory in groups. Groups
are condensed into (term, local aggregated information) pairs which are sent to the
statistician. For example, if an indexer holds 10,000 pages that contain the term
“cat”, instead of sending 10,000 individual postings to the statistician, the indexer
can count the postings as they pass through memory in a group and send the
summary (“cat”, 10000) to the statistician. The statistician receives local counts
from all indexers, and aggregates these values to produce the global document
frequency for “cat”. This technique greatly reduces network overhead in collecting
statistics.

5.2 Statistic Gathering Strategies

Here we describe and compare the two strategies mentioned above for sending in-
formation to the statistician. Table 5 qualitatively summarizes their characteristics
(using the same notation as in Table 3). The column titled “Parallelism,” refers to

10Term-level refers to the fact that any gathered statistic describes only single terms, and not
higher level entities such as pages or documents.
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Phase Statistician
load

Memory
usage

Parallelism

ME merging +− + +−
FL flushing − − ++

Table 5. Comparing strategies

cat: (7,2)
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(2,1)
(5,1)

dog:(1,3)
(4,6)
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Fig. 9. ME strategy

the degree of parallelism possible within each strategy.
ME Strategy (sending local information during merging). Summaries

for each term are aggregated as inverted lists are created in memory, and sent
to the statistician. The statistician receives parallel sorted streams of (term, local-
aggregate-information) values from each indexer and merges these streams by term,
aggregating the sub-aggregates for each term to produce global statistics. The
statistics are then sent back to the indexers in sorted term order. This approach is
entirely stream based, and does not require in-memory or on-disk data structures
at the statistician or indexer to store intermediate results. However, using streams
means that the progress of each indexer is synchronized with that of the statistician,
which in turn causes indexers to be synchronized with each other. As a result, the
slowest indexer in the group becomes the bottleneck, holding back the progress
of faster indexers. Figure 9 illustrates the ME strategy for collecting document
frequency statistics for each term. Note that the bottom lexicon does not include
statistics for “rat” because the term is not present in the local collection.

FL Strategy (sending local information during flushing). As sorted runs
are flushed to disk, postings are summarized and the summaries sent to the statisti-
cian. Since sorted runs are accessed sequentially during processing, the statistician
receives streams of summaries in globally unsorted order. To compute statistics
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from the unsorted streams, the statistician keeps an in-memory hash table of all
terms and their statistics, and updates the statistics as summaries for a term are
received. At the end of the processing phase, the statistician sorts the statistics in
memory and sends them back to the indexers. Figure 10 illustrates the FL strategy
for collecting document frequency statistics.

5.3 Experiments

To demonstrate the performance and scalability of the collection strategies, we
ran the index-builder and merging processes on our testbed, using a hardware
configuration consisting of four indexers.11 We experimented with four different
collection sizes - 100000, 500000, 1000000, and 2000000 pages, respectively. The
results are shown in Figure 11, where we can see the relative overhead (defined as
T2−T1

T1
where T2 is the time for full index creation with statistics collection and T1 is

the time for full index creation with no statistics collection) for both strategies. In
general, experiments show the FL strategy outperforming ME, although they seem
to converge as the collection size becomes large. Furthermore, as the collection size
grows, the relative overheads of both strategies decrease.

Comparison of strategies. At first glance ME might be expected to outper-
form FL: since the statistician receives many summary streams in FL, but only one
from each indexer in ME, it performs more comparison and aggregation in FL than
in ME. However, as mentioned earlier, merging progress in ME is synchronized
among the servers. Hence, a good portion of computation done at the statistician
cannot be done in parallel with merging activities at the indexer.

In FL, on the other hand, the indexer simply writes summaries to the network
and continues with its other work. The statistician can then asynchronously process
the information from the network buffer in parallel. However, not all work can be
done in parallel, since the statistician consumes summaries at a slower rate than

11All indexers had the specifications listed in Section 2.
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the indexer writes them to network, and the network buffer generally cannot hold
all the summaries from a sorted run. Hence there is still nontrivial waiting at the
indexer during flushing as summaries are sent to the statistician.

Enhancing parallelism. In the ME strategy, synchronization occurs when an
indexer creates a lexicon entry and summary for a term, sends the summary to
the statistician, and then waits for the global statistic to be returned so that the
lexicon entry can be completed. To reduce the effect of synchronization, the merging
process can instead write lexicon entries to a lexicon buffer, and a separate process
will wait for global statistics and include them in the entries. In this way, the first
process need not block while waiting, and both processes can operate in parallel.

Figure 12 shows the effect of lexicon buffer size on merging performance over
a collection of a million pages. Because lexicon entries are created faster than
global statistics are returned on all indexers but the slowest, the lexicon buffer
often becomes full. When this occurs, the process creating lexicon entries must
block until the current state changes. Because larger lexicon buffers reduce the
possibility of saturation, we expect and see that initial increases in size result in large
performance gains. As lexicon buffer size becomes very large, however, performance
slowly deteriorates due to memory contention. Although the entire buffer need not
be present in memory at any one time, the lexicon buffer is accessed cyclically;
therefore LRU replacement and the fast rate at which lexicon entries are created
cause buffer pages to cycle rapidly through memory, swapping out other non-buffer
pages.

Sub-linear growth of overhead. The constant decrease of the ME and FL
relative overhead in Figure 11 is due to the fact that the number of distinct terms in
a page collection is a sub-linear function of collection size. The overhead incurred by
gathering statistics grows linearly with the number of terms in the collection, while
the cost of index creation grows linear-logarithmically with the size of the collection.
As a result, overhead of statistic collection displays sub-linear growth with respect
to index creation time. This prediction is consistent with our experimental results.
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However, the decreasing relative overhead for FL is subject to the constraint that
the hashtable can fit in memory. Considering that a collection of a billion pages
would require a hash table of roughly 5–6 GB in size,12 this constraint may become
a problem for very large collections. While a memory of 6 GB is not completely
unreasonable, a simple alternative using only commodity hardware would be to
run several statisticians in parallel, and partition the terms alphabetically between
statisticians. In this way, each statistician can collect a moderately sized set of
global statistics. We have not yet implemented this option in our system.

6. RELATED WORK

Motivated by the Web, there has been recent interest in designing scalable tech-
niques to speed up inverted index construction using distributed architectures. In
[Ribeiro-Neto et al. 1999], the authors describe three techniques to efficiently build
an inverted index using a distributed architecture. However, they focus on building
global (partitioning index by term), rather than local (partitioning by collection)
inverted files. Furthermore, they do not address issues such as global statistics
collection and optimization of the indexing process on each individual node.

Our technique for structuring the index engine as a pipeline has much in common
with pipelined query execution strategies employed in relational database systems
[Garcia-Molina et al. 2000]. In reference [Chakrabarti and Muthukrishnan 1996],
the authors present a variety of algorithms for resource scheduling, with applications
to scheduling pipeline stages.

There has been prior work on using relational or object-oriented data stores to
manage and process inverted files [Blair 1988; Brown et al. 1994; Gorssman and
Driscoll 1992]. In [Brown et al. 1994], the authors describe the architecture and per-
formance of an IR system that uses a persistent object store to manage inverted files.
Their results show that using an off-the-shelf data management facility improves
the performance of an information retrieval system, primarily due to intelligent
caching and device-sensitive file allocation. We experienced similar performance
improvements, for the same reasons, by employing an embedded database system.
Our storage format differs greatly from theirs because we utilize a single B-tree for
storing all the inverted lists in uniformly structured blocks.

As with the mixed-list scheme presented in this paper, the “self-indexing” in-
verted list structures described in [Moffat and Zobel 1996] (skipped-list) and [Anh
and Moffat 1998] (random-access lists) also provides selective access to portions
of an inverted list. Moffat and Zobel [1996] propose dividing the inverted list into
blocks, each containing a fixed number of postings. To extract postings from within
a block, the block needs to be sequentially decoded; however, a separate skip list
(also compressed) is used to navigate from one block to another. Thus, a given
posting is located by first navigating the skip list to identify the block in which
it might be contained and then decoding that block. Anh and Moffat [1998] use
fixed-length blocks (constant number of bits), rather than blocks with a constant
number of postings, and develop a scheme to efficiently encode and decode such

12From collection statistics described in [Melnik et al. 2000], a billion pages will contain roughly
310 million distinct. If each term uses 20 bytes of storage, this will result in a hashtable of about
5.77 GB.
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blocks.
Conceptually, the blocks used in these structures correspond to the value fields of

the mixed-list scheme. The synchronization points used in [Moffat and Zobel 1996]
correspond to the key fields of the mixed-list scheme. However, there are a couple
of significant differences. First, the value fields are organized as the leaf nodes of
a prefix-compressed B-tree13, whereas in [Moffat and Zobel 1996] and [Anh and
Moffat 1998], all blocks belonging to an inverted list are organized sequentially.
Second, a given value field can include postings from more than one inverted list,
whereas that is not the case with the structures described in [Moffat and Zobel
1996] and [Anh and Moffat 1998]. Hence, the synchronization points in [Moffat
and Zobel 1996] contain just document identifiers, whereas keys also contain index
terms.

Reference [de Kretser et al. 1998] presents different types of global statistics that
may be used for query processing. However, their focus is on the types and uses
of these statistics rather than on the actual process of collecting them. References
[Viles 1994] and [Viles and French 1995] discuss maintenance of global statistics
in a distributed text index, specifically addressing the challenges that arise from
incremental updates. Their work is complementary to our strategies for gathering
statistics during index construction.

Global statistics are also important in meta-search environments [Lawrence and
Giles 1998; Craswell et al. 1999; Gravano et al. 1997], where ranked results from
several (possibly autonomous) search servers must be merged to produce a global
ranking. For such environments, as an alternative to accurate global statistics,
Craswell et al. [1999] suggest the use of “reference statistics” – estimates of the
true statistics derived from sampling, or from the statistics of a different document
collection. However, the use of reference statistics was recommended mainly for
systems in which collection of accurate statistics was not feasible or extremely
expensive (for instance, when merging results from autonomous search services).
In our system, collection of accurate statistics is feasible since all the individual
query servers and indexers are under our control.

A great deal of work has been done on several other issues, relevant to inverted-
index based information retrieval, that have not been discussed in this paper. Such
issues include index compression [Moffat and Bell 1995; Anh and Moffat 1998;
Witten et al. 1999], incremental updates [Brown et al. 1994; Jeong and Omiecinski
1995; Tomasic et al. 1994; Witten et al. 1999; Zobel et al. 1992], and distributed
query performance [Tomasic and Garcia-Molina 1993a; Tomasic and Garcia-Molina
1993b].

7. CONCLUSIONS

In this paper we addressed the problem of efficiently constructing inverted indexes
over large collections of Web pages. We proposed a new pipelining technique to
speed up index construction and demonstrated how to identify the right buffer
sizes for maximum performance. We showed that for large collection sizes, the
pipelining technique can speed up index construction by several hours. We proposed

13Note that all the leaf nodes of the B-tree are also sequentially linked into a list as part of the
B-tree implementation.
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and compared different schemes for storing and managing inverted files using an
embedded database system. We showed that an intelligent scheme for packing
inverted lists in the storage structures of the database can provide performance and
storage efficiency comparable to tailored inverted file implementations. Finally, we
identified the key characteristics of methods for efficiently collecting global statistics
from distributed inverted indexes. We proposed two such methods and compared
and analyzed the tradeoffs thereof.

In the future, we intend to extend our testbed to incorporate distributed query
processing and explore algorithms and caching strategies for efficiently executing
queries. We also intend to experiment with indexing and querying over larger
collections and integration of our text-indexing system with indexes on the link
structure of the Web.
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APPENDIX

A. PROOF OF OPTIMALITY OF EQUISIZE BUFFERS

We are given Tp = max{∑N
i=1 li,

∑N
i=1 pi,

∑N
i=1 fi}. If loading or flushing is the

bottleneck, Tp is either λBtotal or ϕBtotal, and has the same value for all distribu-
tions of Bi including an equisize distribution. If processing is the critical phase,
Tp =

∑N
i=1 (δBi +

∑
Bi log Bi). Under the constraint that

∑N
i=1 Bi = Btotal, the

absolute minimum of Tp is reached when Bi = Btotal

N for each i, i.e., when all buffers
have equal sizes. This global extremum can be easily determined using standard
analysis techniques such as Lagrange multipliers.


