Outline

- Hardware: Disks
- Access Times
- Solid State Drives
- Optimizations
- Other Topics:
 - Storage costs
 - Using secondary storage
 - Disk failures

Hardware

Typical Computer

Secondary Storage

Terms: Platter, Head, Actuator
 Cylinder, Track
 Sector (physical), Block (logical), Gap

Focus on: “Typical Disk”

Secondary storage

Many flavors:
- Disk: Floppy (hard, soft)
 Removable Packs
 Winchester
 SSD disks
 Optical, CD-ROM...
 Arrays
- Tape
 Reel, cartridge
 Robots

Hardware

DBMS

Data Storage
Top View

Disk Access Time

I want block X in memory

Time = Seek Time + Rotational Delay + Transfer Time + Other

Average Random Seek Time

\[S = \frac{\sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} \text{SEEKTIME} (i \rightarrow j)}{N(N-1)} \]
Typical Seek Time

- Ranges from
 - 4ms for high end drives
 - 15ms for mobile devices
- Typical SSD: ranges from
 - 0.08ms
 - 0.16ms

Rotational Delay

Average Rotational Delay

\[R = \frac{1}{2} \text{ revolution} \]

<table>
<thead>
<tr>
<th>HDD Spindle (rpm)</th>
<th>Average rotational latency (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,200</td>
<td>7.14</td>
</tr>
<tr>
<td>5,400</td>
<td>5.56</td>
</tr>
<tr>
<td>7,200</td>
<td>4.17</td>
</tr>
<tr>
<td>10,000</td>
<td>3.00</td>
</tr>
<tr>
<td>15,000</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Transfer Rate: \(t \)

- value of \(t \) ranges from
 - up to 1000 Mbit/sec
 - 432 Mbit/sec 12x Blu-Ray disk
 - 1.23 Mbits/sec 1x CD
 - for SSDs, limited by interface e.g., SATA 3000 Mbit/s
- transfer time: block size \(t \)

Other Delays

- CPU time to issue I/O
- Contention for controller
- Contention for bus, memory

"Typical" Value: 0
• So far: Random Block Access
• What about: Reading “Next” block?

If we do things right (e.g., Double Buffer, Stagger Blocks...)

Time to get = Block Size + Negligible
- skip gap
- switch track
- once in a while, next cylinder

Rule of Thumb
Random I/O: Expensive
Sequential I/O: Much less

Cost for Writing similar to Reading
.... unless we want to verify!
need to add (full) rotation + Block size

• To Modify a Block?

To Modify Block:
(a) Read Block
(b) Modify in Memory
(c) Write Block
[(d) Verify?]

• To Modify a Block?
SSDs

- storage is block oriented (not random access)
- lots of errors
 - e.g., write of one block may cause an error of nearby block
 - e.g., a block can only be written a limited number of times
- logic masks most issues
 - e.g., using log structure
- sequential writes improve throughput (less bookkeeping)
 - latency for seq. writes = random writes
 - performance seq. reads = random reads

SSD vs Hard Disk Comparison (from Wikipedia)

- **Factors:** start up time, random access time, read latency time, data transfer rate, read performance, fragmentation, noise, temperature control, environmental factors, installation and mounting, magnetic fields, weight and size, reliability, secure writing, cost, capacity, R/W symmetry, power consumption.

Random Access Time

- **SSD:** Typically under 0.1 ms. As data can be retrieved directly from various locations of the flash memory, access time is usually not a big performance bottleneck.
- **Hand Drive:** Ranges from 2.9 (high end server drive) to 12 ms (laptop HDD) due to the need to move the heads and wait for the data to rotate under the read/write head.

Data Transfer Rate

- **SSD:** In consumer products the maximum transfer rate typically ranges from about 100 MB/s to 600 MB/s, depending on the disk. Enterprise market offers devices with multi-gigabyte per second throughput.
- **Hard Disk:** Once the head is positioned, an enterprise HDD can transfer data at about 140 MB/s. In practice transfer speeds are lower due to seeking. Data transfer rate depends also upon rotational speed, which can range from 4,200 to 15,000 rpm and also upon the track (reading from the outer tracks is faster due higher).

Reliability

- **SSD:** Reliability varies across manufacturers and models with return rates reaching 40% for specific drives. As of 2011 leading SSDs have lower return rates than mechanical drives. Many SSDs critically fail on power outages; a December 2013 survey found that only some of them are able to survive multiple power outages.
- **Hard Disk:** According to a study performed by CMU for both consumer and enterprise-grade HDDs, their average failure rate is 6 years, and life expectancy is 9–11 years. Leading SSDs have overtaken hard disks for reliability, however the risk of a sudden, catastrophic data loss can be lower for mechanical disks.

Cost and Capacity

- **SSD:** NAND flash SSDs have reached US$0.59 per GB. In 2013, SSDs were available in sizes up to 2 TB, but less costly 128 to 512 GB drives were more common.
- **Hard Drive:** HDDs cost about US$0.05 per GB for 3.5-inch and $0.10 per GB for 2.5-inch drives. In 2013, HDDs of up to 6 TB were available.
Kibibytes

- 1 kibibyte = 2^{10} bytes = 1024 bytes.

<table>
<thead>
<tr>
<th>SI decimal prefixes</th>
<th>IEC binary prefixes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Symbol</td>
</tr>
<tr>
<td>kilobyte (kB)</td>
<td>10^3</td>
</tr>
<tr>
<td>megabyte (MB)</td>
<td>10^6</td>
</tr>
<tr>
<td>gigabyte (GB)</td>
<td>10^9</td>
</tr>
<tr>
<td>terabyte (TB)</td>
<td>10^{12}</td>
</tr>
<tr>
<td>pebibyte (PB)</td>
<td>10^{15}</td>
</tr>
<tr>
<td>exbibyte (EB)</td>
<td>10^{18}</td>
</tr>
<tr>
<td>zettabyte (ZB)</td>
<td>10^{21}</td>
</tr>
<tr>
<td>yottabyte (YB)</td>
<td>10^{24}</td>
</tr>
</tbody>
</table>

See also: Multiples of bits - Orders of magnitude of data

Outline

- Hardware: Disks
- Access Times
- Solid State Drives
- Optimizations
- Other Topics
 - Storage Costs
 - Using Secondary Storage
 - Disk Failures

Optimizations (in controller or O.S.)

- Disk Scheduling Algorithms
 - e.g., elevator algorithm
- Track (or larger) Buffer
- Pre-fetch
- Arrays
- Mirrored Disks
- On Disk Cache

Double Buffering

Problem: Have a File
 » Sequence of Blocks B1, B2

Have a Program
 » Process B1
 » Process B2
 » Process B3

Say $P =$ time to process/block
$R =$ time to read in 1 block
$n =$ # blocks

Single buffer time = $n(P+R)$

Single Buffer Solution

1. Read B1 → Buffer
2. Process Data in Buffer
3. Read B2 → Buffer
4. Process Data in Buffer ...

CS 245 Notes 2
31

CS 245 Notes 2
32

CS 245 Notes 2
33

CS 245 Notes 2
34

CS 245 Notes 2
35

CS 245 Notes 2
36
Double Buffering

Memory:

Disk:

A B C D E F G

A B C D E F G

done

done

Say $P \geq R$

What is processing time?

$P = \text{Processing time/block}$

$R = \text{IO time/block}$

$n = \# \text{ blocks}$

\bullet Double buffering time $= R + nP$

\bullet Single buffering time $= n(R+P)$
Disk Arrays
- RAIDs (various flavors)
- Block Striping
- Mirrored

On Disk Cache

Five Minute Rule
- THE 5 MINUTE RULE FOR TRADING MEMORY FOR DISC ACCESSES
 Jim Gray & Franco Putzolu
 May 1985

- The Five Minute Rule, Ten Years Later
 Goetz Graefe & Jim Gray
 December 1997

Five Minute Rule
- Say a page is accessed every X seconds
 - CD = cost if we keep that page on disk
 - $D = cost of disk unit
 - $I = numbers I/Os that unit can perform
 - In X seconds, unit can do $XI I/Os
 - So CD = $D / XI

Five Minute Rule
- CM = cost if we keep that page on RAM
 - $M = cost of 1 MB of RAM
 - $P = numbers of pages in 1 MB RAM
 - So CM = $M / $P

Five Minute Rule
- If CD is smaller than CM,
 - keep page on disk
 - else keep in memory
- Break even point when CD = CM, or
 $$ X = \frac{\frac{D}{I}}{\frac{M}{P}} $$
Using ‘97 Numbers
- \(P = 128 \) pages/MB (8KB pages)
- \(I = 64 \) accesses/sec/disk
- \(D = 2000 \) dollars/disk (9GB + controller)
- \(M = 15 \) dollars/MB of DRAM
- \(X = 266 \) seconds (about 5 minutes) (did not change much from 85 to 97)

Disk Failures (Sec 2.5)
- Partial \(\rightarrow \) Total
- Intermittent \(\rightarrow \) Permanent

Coping with Disk Failures
- Detection
 - e.g., Checksum
- Correction
 \(\Rightarrow \) Redundancy

At what level do we cope?
- Single Disk
 - e.g., Error Correcting Codes
- Disk Array

Operating System
e.g., Stable Storage
- Logical Block
 \[\text{Copy A} \]

Database System
e.g.,
- Current DB
- Log
- Last week’s DB
Summary

• Secondary storage, mainly disks
• I/O times
• I/Os should be avoided, especially random ones..

Outline

• Hardware: Disks
• Access Times
• Example: Megatron 747
• Optimizations
• Other Topics
 – Storage Costs
 – Using Secondary Storage
 – Disk Failures

here