
Simultaneous Classi�cation and Feature Clustering Using

Discriminant Vector Quantization with Applications to Microarray

Data Analysis

Jia Li Hongyuan Zha

Statistics Department Computer Science Department

Penn State Univ., PA 16802 Penn State Univ., PA 16802

jiali@stat.psu.edu zha@cse.psu.edu

Abstract

In many applications of supervised learning, auto-
matic feature clustering is often desirable for a better
understanding of the interaction among the various
features as well as the interplay between the features
and the class labels. In addition, for high dimensional
data sets, feature clustering has the potential for im-
provement in classi�cation accuracy and reduction in
computational complexity. In this paper, a method is
developed for simultaneous classi�cation and feature
clustering by extending discriminant vector quantiza-
tion (DVQ), a prototype classi�cation method derived
from the principle of minimum description length us-
ing source coding techniques. The method incorpo-
rates feature clustering with classi�cation performed
by fusing features in the same clusters. To illus-
trate its e�ectiveness, the method has been applied
to microarray gene expression data for human lym-
phoma classi�cation. It is demonstrated that incorpo-
rating feature clustering improves classi�cation accu-
racy, and the clusters generated match well with bio-
logical meaningful gene expression signature groups.

1 Introduction

Supervised classi�cation has wide applications in
a variety of science and engineering �elds including
bioinformatics, communication, information retrieval,
and data mining. Due to rapid advances in infor-
mation technology, we have witnessed an explosive
growth in the amount as well as the complexity of sci-
enti�c and engineering data, raising new challenges for
developing e�ective and e�cient data analysis meth-
ods. We now very often have to deal with data of very
high dimensions, exacerbating the curse of dimension-
ality. To make the situation even more complicated,
we also face data with a substantial amount of miss-
ing values resulted from imperfection in various ex-
perimental settings. Furthermore, to gain deeper un-

derstanding of a phenomenon we are interested in, we
are no longer simply satis�ed with high performance
classi�cation. Understanding the interaction among
features and the interplay between features and the
class labels is becoming more likely an integral part
of the research goal.

Feature selection and feature clustering have been
proposed as means for handling data complexity. The
overall goals of feature selection for supervised learn-
ing include 1) improving classi�cation accuracy; 2) re-
ducing computational complexity. Often times with
a smaller set of features more sophisticated classi�-
cation models can be applied without assuming, for
example, independence among the features. While
sharing the goals of feature selection, feature cluster-
ing also seeks to identify clusters of features that have
certain application-dependent meanings, for example,
clusters of semantically-coherent words in textual doc-
ument classi�cation, and clusters of genes providing
expression pro�le signatures for di�erent types of can-
cerous tissue types in microarray data analysis. In
this paper, we present a classi�cation method that
simultaneously predicts class labels and clusters fea-
tures. Our uni�ed approach attempts to cluster fea-
tures so that the clustering causes minimum adverse
e�ects on classi�cation accuracy. On the other hand,
taking classi�cation into consideration is of interest
even from the mere perspective of feature clustering
since the aim in conventional clustering to optimize
a de�ned measure of the tightness of clusters often
lacks practically meaningful support. We will show
that Discriminant Vector Quantization (DVQ) [16],
a prototype classi�cation algorithm, provides a nat-
ural mechanism to combine classi�cation and feature
clustering.

1.1 Previous Research

We focus on the prototype methods [10] of super-
vised classi�cation, which are closely related to vector



quantization (VQ), a technology developed mainly for
the purpose of data compression. Algorithms aimed
at simultaneous compression and classi�cation have
been developed by Oehler, Gray, Perlmutter, Olshen,
and Li [21, 17] through Bayes Vector Quantization
and Tishby, Pereira, Bialek, and Slonim [25] through
the Information Bottleneck Method. Algorithms that
are purely for classi�cation and use VQ as a tool
include k-means [6, 9], Learning Vector Quantiza-
tion [13, 12], and most recently Discriminant Vec-
tor Quantization [16]. See [16] for detailed review
of these algorithms. Many methods for feature se-
lection have been proposed in machine learning and
statistics [14, 18, 19]. In [3], features are clustered us-
ing a version of the K-L divergence of the class label
distributions as similarity measures. In [26], a simi-
lar feature clustering method was proposed using the
above-mentioned Information Bottleneck framework.
In all these methods feature clustering is used as a
preprocessing step and feature clusters are computed
based on certain ad hoc criteria. Furthermore, the fea-
ture clusters, once selected, remain �xed during the
design of the classi�er. In contrast, we seek to inte-
grate feature clustering into classi�cation with feature
clusters computed iteratively to minimize an overall
objective function.

There is a rich resource of literature on cluster-
ing methods applied to microarray gene expression
data. Early work has been done by Eisen, Spellman,
Brown, and Botstein [8] and Ben-Dor, Shamir, and
Yakhini [4]. For an extensive review, readers are re-
ferred to [5]. Tibshirani, Hastie, Narasimhan, and
Chu [28] recently investigated classifying cancer types
using gene expression data.

The rest of the paper is organized as follows: We
describe brie
y Discriminant Vector Quantization in
Section 2 as presented in [16]. In Section 3, a feature
fusion model is established for simultaneous classi�ca-
tion and clustering. The design of the classi�er based
on this model is presented in Section 4. The Bayes
classi�cation rule using the estimated model is pro-
vided in Section 5. How to treat missing data is dis-
cussed in Section 6. Feature selection is discussed in
Section 7. The application of the algorithm to mi-
croarray data is described in Section 8. We conclude
in Section 9.

2 Discriminant Vector Quantization
Assume the training data set is L = f(xi; yi); i =

1; 2; :::; ng, where xi is the feature vector and yi is the
class label. Typically (xi; yi) are considered as inde-
pendent samples of random variables (X;Y ). X is a
continuous random variable in the d-dimensional Eu-

clidean space Rd; and Y is a discrete random vari-
able with �nitely many possible values. Let Y =
f1;2; :::;Mg without loss of generality. A proto-
type method represents the data by a set of points
(quantized vectors), or prototypes. Complying to the
terminology of data compression, we also refer to a
prototype as a codeword. Normally, a class is assigned
to each prototype by majority vote on the associated
class distribution of the prototype; and a test feature
vector is identi�ed as the class of its closest prototype.

Assume that the feature vector X and the class la-
bel Y are described by K prototypes with centroids
�̂k, k = 1; 2; :::;K. The probability mass function
(pmf) of Y in each prototype k is bk(y). By the prin-
ciple of minimum description length (MDL) [22, 23],
the optimal model provides the shortest description.
This principle is applied to the design of prototypes
by DVQ.
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Figure 1: The encoding system for X and Y

DVQ employs an encoding system illustrated in
Figure 1 to quantize X to a high precision and Y
losslessly. In particular, the �rst stage VQ quantizes
X to a prototype �̂k. The second stage VQ quan-
tizes the residual between X and �̂k. To encode Y , a
Hu�man code is designed for each prototype. Denote
the �rst stage encoder and decoder of X by � and �
respectively, the residual encoder by ~�, the entropy
encoder of indices output by � by �, and the lossless
encoder of Y by �.

If we assume that the residual between X and its
prototype is governed by the probability density func-
tion (pdf) �(x) and the prior probability for X being
in prototype k is ak, the joint distribution of X and



Y , PXY , is:

PXY (x; y) =

KX
k=1

ak�(x� �̂k)bk(y)

x 2 Rd; y 2 f1; 2; :::;Mg : (1)

Note that
PK

k=1 ak = 1. The pdf �(x) is assumed to
have zero mean and covariance matrix �. For simplic-
ity, it is also assumed that �(x) speci�es a distribution
with independent components of a vector. As a result,
� is diagonal; and �(x) =

Qd
j=1 �j(x

(j)), where x(j)

is the jth dimension of vector x, a notation adopted
throughout the paper.

In the spirit of the principle of MDL, the DVQ
method designs the optimal encoding system and es-
timates parameters in Model (1) using the relation
between those parameters and the optimal encoder.
A recursive algorithm has been developed to improve
the components, �, �, �, and �, in the encoder it-
eratively. The distribution of residuals �(x) can be
estimated using a parametric model, e.g., Gaussian
distribution. Although Gaussian distribution is re-
strictive with regard to �tting the residual data, it
enjoys robustness due to low complexity.

The optimal classi�cation rule (Bayes classi�ca-
tion) that minimizes the average classi�cation error
rate based on Model (1) is

ŷ = max
y2Y

�1PfY = y j X = xg

= max
y2Y

�1
KX
k=1

ak�(x � �̂k)bk(y) : (2)

3 The Fusion Model for Classi�cation

and Feature Clustering

In this section, we extend Model (1) to incorporate
feature clustering. The number of features is sim-
ply the dimension of X , denoted by d. We will use
features and dimensions of X interchangeably in the
sequel. Suppose the features are grouped into g clus-
ters, g � d. Denote the mapping of a feature into
its cluster by function h(j), j = 1; :::; d. For features
in cluster l, i.e., feature j's with h(j) = l, the values
in dimension j's of every prototype �̂k are assumed
equal, that is, features in one cluster are not distin-
guished by the prototypes. We can thus \shrink" the
d-dimensional vector �̂k to g dimensions. From now
on, �̂k denotes a vector with g dimensions and its lth

dimension �̂
(l)
k is the value in the kth prototype for

all the features in cluster l. Extending Model (1), we
have the following model for the joint distribution of

X and Y re
ecting feature clustering:

PXY (x; y) =
KX
k=1

ak

dY
j=1

�j(x
(j) � �̂

(h(j))
k )bk(y) : (3)

The above model is referred to as the fusion model
as features in the same cluster are merged into one
dimension in the prototypes. A model in the form
of (3) tends to �t the data well when features in the
same cluster are close to each other, for instance, in
Euclidean distance. Consequently, �tting Model (3)
implies simultaneous feature clustering. On the other
hand, as a model for the joint distribution of the fea-
ture vector X and the class label Y , Model (3) leads
to good classi�cation if it �ts the data well. The in-
terplay of classi�cation and feature clustering will be-
come clearer when we present the algorithm to esti-
mate the model.

In addition to the parameters shared by Model (1),
the feature clustering function h in Model (3) needs
to be estimated. The estimation of Model (3) based
on optimal encoding is motivated by the principle of
MDL. See [16] for detailed discussion. The two-stage
encoding system in Figure 1 with modi�cation is used
to quantize X to a given high precision and to encode
Y losslessly. The part in the dash line box in Fig-
ure 1 is modi�ed, as shown in Figure 2. The design
of the encoding system includes the feature clustering
function h(j) as well as the �rst stage encoder and
decoder �, �, the entropy encoder � for the indices
of prototypes, and �, the classi�ed entropy encoder
of Y . Since � maps an index k output by the en-
coder � to a g-dimensional vector �̂k, to compare the
prototype to a feature vector xi, �̂k is expanded to
a d-dimensional vector with dimension j speci�ed by

�̂
(h(j))
k . For brevity, with a bit abuse of notation, we

denote this expanded vector by h(�̂k). The two us-
ages of h will be distinguishable from the context. The
comparison between xi and its prototype can there-
fore be expressed as the di�erence between xi and
h(�(�(xi))).

Expand prototype
        vector

k kh(     )First-stage
  Decoder

Figure 2: The modi�ed part of the encoding system
for X and Y with feature clustering



4 Design of the Classi�er with Feature

Clustering
4.1 Objective function

Notation used in the design of the encoding sys-
tem presented in Figure 1 and 2 is introduced next.
Assume �(x) = k, if x 2 Pk, k 2 f1; 2; :::;Kg,SK
k=1 Pk = X , and �(k) = �̂k. Denote PfX 2 Pkg

by q(k). Given �, the optimal entropy encoder for its
output �(X) is the Hu�man code [7] assigning a code
length log 1

q(k) to k. The fact log
1

q(k) may not be an

integer will be ignored. In the sequel, nats is used.
Denote PfY = m j X 2 Pkg by p(k;m). The optimal
entropy encoder for Y given X 2 Pk is a Hu�man
code assigning code length log 1=p(k;m) to class m.
As shown in Figure 1, �, the encoder for Y , contains
multiple Hu�man codes and selects one to encode Y
according to �(X). To encode the residual of the
�rst-stage quantizer, X � h(�(�(X))) is assumed to
be governed by a multivariate Gaussian distribution
with independent dimensions. The variance of each
dimension, denoted by Dj , j = 1; 2; :::; d, is the mean
squared error (MSE) in that dimension achieved by
the �rst-stage quantizer h � � � �. According to the
rate distortion function of a univariate Gaussian dis-
tribution [7], on average, the number of nats needed to
encode the jth dimension of the residual to a precision
with MSE �2j is

1
2 logDj=�

2
j . Since a Gaussian source

represents the worst scenario for quantization given
variance [15], 1

2 logDj=�
2
j is an upper bound on the

average code length needed for the residual. To sum
up, the average code length to encode f(Xi; Yi)g

n
i=1

so that the jth dimension of X is quantized with dis-
tortion �2j and Y is encoded losslessly is,

nH(q) +
n

2

dX
j=1

log
Dj

�2j
+ n

KX
k=1

q(k)H(p(k)) ;

whereH(q) is the entropy of the pmf speci�ed by q(k),
k = 1; 2; :::;K; and H(p(k)) is the entropy of the pmf
speci�ed by p(k;m), m = 1; 2; :::;M , k �xed. The
code length of the training sequence f(xi; yi)g

n
i=1 is

nX
i=1

log
1

q(�(xi))
+
n

2

dX
j=1

logDj

�
n

2

dX
j=1

log�2j +

nX
i=1

log
1

p(�(xi); yi)
; (4)

where Dj =
1
n

Pn

i=1(x
(j)
i � �̂

(h(j))
�(i) )2, x(j) denotes the

jth dimension in the vector x; and �̂
(h(j))
�(i) is the quan-

tized value of x(j) by the �rst-stage encoder and de-
coder. For brevity, we use �(i) rather than �(xi) to

denote the prototype assigned to the ith data point
(xi; yi).

The goal is to design �, �, �, �, and h to minimize
the following objective function

L(�; �; �; �; h) =

nX
i=1

log
1

q(�(xi))
+
n

2

dX
j=1

logDj

+

nX
i=1

log
1

p(�(xi); yi)
; (5)

obtained from (4) by omitting the third term,
which depends only on the preselected precision of
X . The third term in (5), with expected value

n
PK

k=1 q(k)H(p(k)), re
ects the penalty on misclas-
si�cation. If H(p(k)) is low, the quantization cell Pk
is \pure" in the sense that a certain class dominates.
Hence, the probability of misclassi�cation is low. The
second term in (5) represents the cost resulted from
two-way compression on both samples and features.
The �rst term in (5) depends on the entropy of in-
dices output by �. It represents to a certain extent
the complexity of the quantized values. In summary,
MDL leads to the design of a vector quantizer with
an objective function incorporating compression dis-
tortion, the penalty of misclassi�cation, and the com-
plexity of quantized feature vectors.

4.2 Iterative Design

The �ve components �, �, �, �, and h are updated
recursively by alternating the optimization of each one
with the other four �xed. The optimal entropy en-
coder � uses the Hu�man code determined by the pmf
q(k), k = 1; 2; :::;K. The classi�ed entropy encoder �
contains multiple Hu�man codes determined by the
pmfs p(k;m), m = 1; 2; :::;M . For �xed �, �, �, and
h, � is not a nearest neighbor encoder, i.e., (xi; yi) is
not necessarily mapped to the prototype closest to xi
in the Euclidean distance. On the other hand, given
�, �, �, and h, the optimal �(k) is in general not the
average of all the xi's mapped to the kth prototype, a
key di�erence from the basic DVQ due to the feature
clustering function h. Next, we present the procedure
to update � with the other components �xed. It is
easy to see that when � is �xed, the optimal � and
� do not depend on the other components. The up-
date of � and � with �xed � is straightforward. As �
and � contain Hu�man codes derived from pmfs q(�)
and p(�; �), the formula for updating q(�) and p(�; �)
are provided instead. The update of � and h will be
introduced afterwards.

As the training data set is �nite, searching for the
optimal � is equivalent to determining n integer values



�(xi), i = 1; :::; n, where n is the size of the training
data set and �(xi) 2 f1; :::;Kg. Denote � at the be-
ginning of iteration t by �(t). Let x̂i = h(�(�(t)(xi))).
The algorithm for updating �(t)(xi) to �(t+1)(xi) is
as follows:

1. 1! i;

2. 1
n

Pn

l=1(x
(j)
l � x̂

(j)
l )2 ! Dj , j = 1; 2; :::; d.

3.

min
k

�1

2
4log 1

q(k)
+ log

1

p(k; yi)
+
n

2

dX
j=1

log(Dj+

(x
(j)
i � �(k)(h(j)))2 � (x

(j)
i � x̂

(j)
i )2

n
)

#

! �(t+1)(xi)

4. Dj +
(x

(j)
i
��(�(t+1)(xi))

(h(j)))2�(x
(j)
i
�x̂

(j)
i

)2

n
! Dj ,

j = 1; 2; :::; d.

5. h(�(�(t+1)(xi)))! x̂i

6. i + 1 ! i. If i > n, stop; otherwise, go back to
step 3.

After �(t+1) is obtained, q(�) and p(�; �) are updated
by the following formula

q(k) =

nX
i=1

I(�(t+1)(xi) = k)=n ; (6)

p(k;m) =

Pn

i=1 I(�
(t+1)(xi) = k)I(yi = m) + 1Pn

i=1 I(�
(t+1)(xi) = k) +M

; (7)

where k = 1; 2; :::;K and m = 1; 2; :::;M . As usual
I(�) is the indicator function that equals 1 if the ar-
gument is true and 0 otherwise. Note that to avoid
classes with zero frequency, p(k;m) is computed by a
modi�ed version of the normal frequency estimation.

When all the other four components are �xed, the
minimization of the objective function in (5) asso-
ciates with � only through the second term

n

2

dX
j=1

logDj

=
n

2

dX
j=1

log

 
1

n

nX
i=1

(x
(j)
i � �̂

(h(j))
�(i) )2

!
: (8)

The update of � is essentially searching for the op-

timal �̂
(l)
k , k = 1; :::;K, l = 1; :::; g. For the conve-

nience of illustration, we index features in cluster l by

jl and assume the number of features in cluster l is
dl,
Pg

l=1 dl = d. Then Equation (8) can be written as

n

2

dX
j=1

logDj

=
n

2

gX
l=1

X
jl

log

 
1

n

nX
i=1

(x
(jl)
i � �̂

(l)
�(i))

2

!
: (9)

Equation (9) demonstrates that �̂
(l)
k , k = 1; :::;K, can

be optimized separately for each l by minimizing

X
jl

log

nX
i=1

(x
(jl)
i � �̂

(l)
�(i))

2 :

Without loss of generality, let us derive �̂
(1)
k , assuming

j1 = 1; 2; :::; d1. Note that

X
jl

log(

nX
i=1

(x
(jl)
i � �̂

(l)
�(i))

2

=

d1X
j1=1

log

KX
s=1

nX
i=1

(x
(j1)
i � �̂(1)s )2I(�(i) = s)

, u(�̂
(1)
1 ; �̂

(1)
2 ; :::; �̂

(1)
K ) : (10)

To minimize the K variable function u, a descending

algorithm is used to search for �̂
(1)
1 , �̂

(1)
2 , ..., �̂

(K)
2

iteratively.

Suppose �̂
(1)
s0 is to be solved to minimize function

u with all the other variables �xed. Then a local min-
imum of u should satisfy

@u

@�̂
(1)
s0

=

d1X
j1=1

2
Pn

i=1(�̂
(1)
s0 � x

(j1)
i )I(�(i) = s0)PK

s=1

Pn

i=1(x
(j1)
i � �̂

(1)
s )2I(�(i) = s)

= 0 : (11)

Suppose the algorithm is at iteration t. Denote

Tj1;t =
KX
s=1

nX
i=1

(x
(j1)
i � �̂(1)s )2I(�(i) = s) ;

where �̂
(1)
s are the current values at iteration t. Equa-

tion (11) can be approximately solved by

�̂
(1)
s0 =

Pd1
j1=1

Pn

i=1 x
(j1)
i I(�(i) = s0)=Tj1;tPd1

j1=1

Pn

i=1 I(�(i) = s0)=Tj1;t
;

if modifying �̂
(1)
s0 causes little change in the summa-

tion over all �̂
(1)
s 's in Tj1;t.

To sum up, the descending algorithm is as follows.



1. 0! t

2. Set �̂
(1)
s;t to the values of �̂

(1)
s given by the decoder

� before the current iteration of update.

3. For j1 = 1; :::; d1, set

Tj1;t =
KX
s=1

nX
i=1

(x
(j1)
i � �̂

(1)
s;t )

2I(�(i) = s) :

4. 1! s0

5. Set

w =

Pd1
j1=1

Pn

i=1 x
(j1)
i I(�(i) = s0)=Tj1;tPd1

j1=1

Pn

i=1 I(�(i) = s0)=Tj1;t

6. If

u(�̂
(1)
1;t ; :::; �̂

(1)
s0�1;t; w; �̂

(1)
s0+1;t; :::; �̂

(1)
K;t) <

u(�̂
(1)
1;t ; :::; �̂

(1)
s0;t; :::; �̂

(1)
K;t) ;

set �̂
(1)
s0;t = w and update

Tj1;t =

KX
s=1

nX
i=1

(x
(j1)
i � �̂

(1)
s;t )

2I(�(i) = s) :

7. If s0 < K, s0 + 1! s0, go back to Step 5;
else f
If a stopping criterion is satis�ed, stop;
else
t+ 1! t, go back to Step 3. g

When all the other four components are �xed,
the modi�cation of h only a�ects the second term
n
2

Pd

j=1 logDj of the objective function in (5). Hence,
the minimization of L(�; �; �; �; h) is equivalent to

minimizing n
2

Pd

j=1 logDj . Furthermore, for a given
dimension j0, the value of h(j0) only a�ects logDj0

in the summation
Pd

j=1 logDj . It is thus su�cient
to determine h(j0) by minimizing Dj0 separately for

each j0. Recall Dj0 =
1
n

Pn

i=1(x
(j0)
i ��̂

(h(j0))
�(i) )2. Deter-

mined by the encoder � and decoder � respectively,

the mapping �(i) and �̂
(1)
�(i), �̂

(2)
�(i), ..., �̂

(g)
�(i) are all

�xed in the update of h. The optimal h(j) is thus

h(j0) = min
l

�1
nX
i=1

(x
(j0)
i � �̂

(l)
�(i))

2 : (12)

Geometrically, h(j) performs a nearest neighbor par-
titioning of the space of the features (dimensions).

From the perspective of source coding, there are g
codewords in the n-dimensional Euclidean space, the
lth one speci�ed by a row vector

(�̂
(l)
k(1); �̂

(l)
k(2); :::; �̂

(l)
k(n)) :

The number of data points in the n-dimensional space
is d, the jth one being a row vector

(x
(j)
1 ; x

(j)
2 ; :::; x(j)n ) :

4.3 Initialization

To initialize �, �, �, �, and h, we determine h,
�, and � �rst. The initial � and � are derived from
Equation (6) and (7) after � is assigned. The initial
h(j), j = 1; :::; d is derived from k-means clustering.
Each feature j across all the samples can be viewed

as a row vector of n dimensions (x
(j)
1 ; x

(j)
2 ; :::; x

(j)
n ).

K-means clustering in the n-dimensional vector space
with d features yields an assignment of each feature j
to one of the g clusters h(j). For each cluster l, the
feature closest to the centroid of the cluster is selected.
These g features are used to design the initial � and
�. For brevity of notation, assume without loss of
generality that features 1, 2, ..., g are selected. K-
means clustering is used again on the g-dimensional

column vector (x
(1)
i ; x

(2)
i ; :::; x

(g)
i )t, i = 1; 2; :::; n, to

assign them to K prototypes. The initial �(xi) is set
to the prototype determined by k-means. The initial
decoder � sets �̂k, k = 1; :::;K, to be the centroid of
the kth prototype.

To choose the number of feature clusters g and the
number of prototypes K, cross-validation [27] can be
used if the goal is only to minimize classi�cation error
rate. We can also select g and K from the perspective
of model selection. For instance, the Bayesian Infor-
mation Criterion (BIC) [24] suggests that the optimal
model ought to minimize a penalized log likelihood,
particularly,

Pn

i=1 logPXY (xi; yi) +
Np

2 logn. Np is
the number of parameters in the model, increasing
with g, K, and the sample dimension d. Other con-
siderations for selecting g and K include computa-
tional complexity and practical issues depending on
the speci�c problem at hand.

5 Bayes Classi�cation
The performance of a classi�er K is normally mea-

sured by the Bayes risk. Suppose the cost of labeling
X as class m̂ when the true class is m is Cm;m̂. The
Bayes risk is de�ned as

B(K) =

MX
m=1

MX
m̂=1

Cm;m̂P (K(X) = m̂ and Y = m) :



To minimize the Bayes risk, note that

B(K) =

MX
m=1

MX
m̂=1

Cm;m̂P (K(X) = m̂ and Y = m)

= EXEY jXCY;K(X)

= EX

MX
m=1

P (Y = m j X)Cm;K(X) :

It is therefore su�cient to minimize the conditional
risk EY jX=xCY;K(x) for each x. The optimal classi�-
cation rule, referred to as the Bayes classi�er, is given
by

K(x) = min
m̂2Y

�1
MX
m=1

P (Y = m j X = x)Cm;m̂ :

Most frequently, Cm;m̂ = 1, if m 6= m̂ and 0 other-
wise. The resulting Bayes risk is the probability of
misclassi�cation. Correspondingly, the Bayes classi-
�er is K(x) = maxm̂

�1P (Y = m̂ j X = x), i.e., the
rule of majority vote. In this paper, Bayes risk is
restricted to the probability of misclassi�cation.

After the design of the optimal encoding system,
the parameters in the fusion model (3) are estimated

by âk = q(k) and b̂k(m) = p(k;m). The prototypes
�̂k and h are provided directly by the encoding sys-
tem. Since we assume the distribution of the residu-
als �(x) =

Qd

j=1 �j(x
(j) � �̂

(h(j))
k ) to be a multivari-

ate Gaussian distribution with zero mean and inde-
pendent dimensions, �j is uniquely determined by its
variance, which is estimated byDj . The classi�er that
minimizes classi�cation error rate predicts the class of
a feature vector x according to the Bayes rule:

ŷ = max
y2Y

�1
KX
k=1

âk

dY
j=1

�j(x
(j) � �̂

(h(j))
k )bk(y) :

6 Missing Data
In practice, the issue of missing data often arises.

For instance, the microarray data set analyzed in Sec-
tion 8 has 5% missing data overall. The percentage of
samples with missing features is as high as 91% and
the percentage of features with values missing in cer-
tain samples is 74%. It is thus impractical to use only
samples without missing data. The issue of missing
data can be dealt with naturally by the mechanism
of DVQ without altering the criteria for estimation in
training and for prediction of classes in testing. Pro-
totypes are designed by DVQ based on the principle of
MDL. The goal in the design is therefore to transmit
the training data by the shortest codelength. If a sam-
ple has missing features, it will still be transmitted.

But at the receiving end, values in these dimensions
are considered as useless information.

In training and testing, there are two types of com-
putation involving a missing dimension of a sample:
summation and multiplication. If a term in a sum-
mation (product) uses a missing feature, that term is
set to zero (one). Certain normalization factors for
various summations may need to be adjusted due to
the reduced amount of data. Missing features only

a�ect the term n
2

Pd

j=1 logDj , Dj = 1
n

Pn

i=1(x
(j)
i �

�̂
(h(j))
�(i) )2, in the objective function in (5). In general,

that term ought to be
Pd

j=1
nj
2 logDj , where

Dj =
1

nj

nX
i=1

(x
(j)
i � �̂

(h(j))
�(i) )2I(x

(j)
i is not missing) ;

and nj is the number of samples without missing val-
ues of feature j. The Bayes rule for classifying a
feature vector x with missing dimensions using the
estimated joint distribution P̂XY is straightforward.
Without loss of generality, assume that only the �rst
d0 dimensions, d0 < d, are known. The optimal class
is:

ŷ = max
y2Y

�1PfY = y j X(1) = x(1);

X(2) = x(2); :::; X(d0) = x(d
0)g

= max
y2Y

�1PfY = y;X(1) = x(1);

X(2) = x(2); :::; X(d0) = x(d
0)g

= max
y2Y

�1
KX
k=1

âk

d0Y
j=1

�j(x
(j) � �̂

(h(j))
k )bk(y) :

7 Feature Selection from Feature

Clusters
Based on the feature clusters designed by the ex-

tended DVQ, a straightforward and ad hoc way to
select features is to choose one representative feature
from each cluster, e.g., the feature closest to the cen-
troid of the cluster. The encoding system does not
provide the centroids of the feature clusters directly.
However, they can be computed from � and h by av-
eraging. For cluster l, l = 1; 2; :::; g, the centroid is a

row vector of n dimensions, (��
(l)
1 ; ��

(l)
2 ; :::; ��

(l)
n ), where

��
(l)
i can be computed by

��
(l)
i =

Pd
j=1 x

(j)
i I(h(j) = l)Pd

j=1 I(h(j) = l)
:

Experiments with the microarray data described
in Section 8 show that classi�cation based only on



selected features tends to be inferior to classi�cation
by fusing features in the same cluster, especially when
the number of features selected is small.

A more constructive approach to feature selection
could be to modify the fusion model in (3) and the
corresponding objective function L in (5) to re
ect
the requirement of feature selection rather than clus-
tering. We avoid detailed discussion since the focus is
on feature clustering here.

8 Application to Microarray Data
DNA microarray is a rapidly developing technol-

ogy that allows the gene expression in an organism to
be examined on a genomic scale, simultaneously mea-
suring the transcription levels of tens of thousands
of genes. In one particular application in cancer re-
search, gene-expression pro�ling based on DNA mi-
croarray technology is expected to revolutionize can-
cer diagnosis. Our classi�cation experiments are car-
ried out based on data collected using 128 lymphochip
microarrays designed to monitor genes involved in
normal and abnormal lymphocyte development. The
particular cancer studied is di�use large B-cell lym-
phoma (DLBCL), a disease that takes in a clinically
and morphologically varied group of tumors a�ect-
ing the lymph system and blood [1]. The data set
contains about 1.8 million measurements of gene ex-
pressions on 96 normal and malignant lymphocyte
samples and is available at the following web site
http://llmpp.nih.gov/lymphoma/. Each sample in
the data set contains expression levels of 4026 genes;
and the 96 samples are divided into nine classes. We
chose four classes for the classi�cation experiments be-
cause the other classes contain too few samples. The
four classes are: 1) 46 samples of DLBCL (di�use
large B-cell lymphoma), 2) 11 samples of CL (follic-
ular lymphoma), 3) 10 samples of ABB (Activated
Blood B), 4) 9 samples of CLL (chronic lymphocytic
leukemia).

In the experiment, the 76 samples of 4 classes are
divided into a training set and a testing set of an equal
number of samples. Classi�cation error rates stated
below are based on the testing data unless speci�ed.
We have experimented with 10, 50, 200, and 400 fea-
ture clusters. The number of prototypes used in train-
ing is 10. The classi�cation error rates for all the four
numbers of clusters are 5:3%. Similar classi�cation
results are obtained when the number of prototypes
is around 10. Using too few prototypes yields low
classi�cation performance because of over-simpli�ed
modeling. On the other hand, since the training data
set contains only 38 samples, 10 prototypes are used
to ensure su�cient number of samples in each proto-

type. Experiments show, however, using more than 10
prototypes may yield lower classi�cation error rates.
For instance, when 20 prototypes are used with 10
feature clusters, the error rate is 2:6% for the testing
data and 0:0% for the training data.

8.1 A closer look at the gene clusters gen-
erated

We have also manually examined two gene clusters
for a classi�cation run using 10 gene clusters. Among
the 4026 genes, many have unknown functions. Some
of the genes with known functions are identi�ed in
[1] with brief description of their biological functions
and possible interactions. In Table 1 we list the known
genes in the two gene clusters examined and indicate
which gene pro�le signature groups they belong to.
The numbers in the parentheses indicate the number
of genes in each gene cluster. The �rst cluster con-
tains genes corresponding to the lympho-node gene
expression signature and T-cell gene expression sig-
nature [1]. Comparing this gene cluster with the two
signature groups, we notice that only four types of
genes in the T-cell gene expression signature are not
included in this cluster: PKC-�, fyn, T-cell receptor
� chain, and Caspase. PKC-�, fyn, and Caspase ap-
pear together in another cluster; and T-cell receptor
� chain in yet another cluster. We examined the gene
expression pro�les for T-cell receptor �, fyn, and Cas-
pase. They are quite similar for samples in DLBCL
and ABB, but for samples in CLL and CL, there are
prominent di�erences in T-cell receptor � versus fyn
and Caspase. At this point, we do not know the bi-
ological signi�cance of the di�erences. The second
gene cluster contains genes corresponding to the pro-
liferation gene expression signature. Missing from the
second gene cluster are only SOS-1 genes; and again
their expression pro�les are relatively di�erent from
those in the second gene cluster.

9 Conclusion
In this paper, a method for classi�cation with si-

multaneous feature clustering is presented. Extended
from the approach of Discriminant Vector Quantiza-
tion, a statistical classi�cation model with feature fu-
sion is proposed to integrate the optimization of clas-
si�cation and feature clustering. This model also al-
lows missing data to be handled naturally without
altering the estimation criterion and the Bayes classi-
�cation rule. Feature selection based on the clusters
generated has been explored. Motivated by the prin-
ciple of minimum description length, the model is esti-
mated by optimizing a source coding system. An e�-
cient recursive algorithm has been developed to design
the coding system. The application of the method



Table 1: Known genes in two gene clusters
Cluster 1 (209) Cluster 2 (250)

CD14 Cyclic A
CD105 BUB 1

CSF-1 receptor Cyclic B
FGF-7 SOCS-1
MMP-9 Ki67
NK4 p55CDc

TIMP-3 PLK
SDF-1 aurora-related kinase 1

Cathepsin B P-16
Fc � receptor 
 chain Thymidine kinase

integrin CDC
LAT RAD54
CD2 Dihydrofolate reductase
CD3
CD49
IRF-1

to microarray gene expression data has demonstrated
high performance classi�cation and promising results
of feature clustering.
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