
Recovery Techniques For Database Systems*

JOOST S. M. VERHOFSTAD

BNSR, 522 Unwersity Avenue, Toronto, Ontarm M5G 1 W7 Canada

A survey of techniques and tools used in filing systems, database systems, and operating
systems for recovery, backing out, restart, the mamtenance of consistency, and for the
provismn of crash resistance is given.

A particular view on the use of recovery techmques in a database system and a
categorization of different kinds of recovery and recovery techmques and basic principles
are presented. The purposes for which these recovery techniques can be used are
described Each recovery techmque is illustrated by examples of its application in exmtlng
systems described in the literature.

A main conclusion from this survey is that the recovery techmques described are all
useful; they are applied for different purposes and m different envLronments. However, a
certain trend in the increasing use of specific techniques during the past few years can be
noted. Another main conclusion is tha t there are still enormous integrity and recovery
problems to be solved for parallel processes and distributed processing.

Keywords and Phrases: audit trail, backup, checkpoint, database, differentml files, filing
system, incremental dumping, recovery.

CR Categories: 1.3, 3.73, 4.33, 4.9

INTRODUCTION
Recovery techniques can be used to restore
data in a system to a usable state. Such
techniques are widely used in filing systems
and database systems in order to cope with
failures. A failure is an event at which the
system does not perform according to spec-
ifications. Some failures are caused by
hardware faults (e.g., a power failure or disk
failure), software faults {e.g., bugs in pro-
grams or invalid data), or human errors
(e.g., the operator mounts a wrong tape on
a drive, or a user does something uninten-
tional). A failure occurs when an erroneous

* The research work described here was done while
the author was at the Computing Laboratory, Clare-
mont Tower, Claremont Road, University of Newcas-
tle upon Tyne, UK.

state of the system is processed by algo-
r i thms of the system. The te rm error is, in
this context, used for tha t par t of the state
which is "incorrect ." An error is thus a
piece of information which can cause a fail-
ure [MELt77].

In order to cope with failures, additional
components and abnormal algorithms can
be added to a system. These components
and algorithms a t t empt to ensure tha t oc-
currences of erroneous states do not result
in later system failures; ideally, they re-
move these errors and restore them to "cor-
rect" states from which normal processing
can continue. These additional components
and abnormal algorithms, called recovery
techniques , are the subject of this survey.

The re are many kinds of failures and
therefore many kinds of recovery. There is

General pernussion to make fatr use m teaching or research of all or part of this material is granted to individual
readers and to non-profit libraries acting for them provided that ACM's copyright notice m given and that
reference is made to the publication, to its date of issue, and to the fact tha t reprinting privileges were granted
by permission of the Association for Computmg Machinery. To otherwise reprint a figure, table, other substantial
excerpt, or the entire work requires specific permission as does republication, or systematic or multiple
reproduction.
© 1978 ACM 0010-4892/78/0300-0167 $00.75

Computing Surveys, Vol. 10, No 2, June 1978

168 • J. S. M . Verhofstad

CONTENTS

INTRODUCTION
OVERVIEW OF RECOVERY TECHNIQUES
SALVATION PROGRAMS
INCREMENTAL DUMPING
AUDIT TRAIL
DIFFERENTIAL FILES
BACKUP AND CURRENT VERSIONS
MULTIPLE COPIES
CAREFUL REPLACEMENT
DIRECTIONS FOR FUTURE RESEARCH AND RELATED

WORK
SUMMARY AND CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES

T

always a limit to the kind of recovery that
can be provided. If a failure not only cor-
rupts the ordinary data, but also the recov-
ery data--redundant data maintained to
make recovery possible--complete recov-
ery may be impossible. As described by
RandeU [RAND78], a recovery mechanism
will only cope with certain failures. It may
not cope with failures, for example, that are
rare, that have not been thought of, that
have no effects, or that would be too expen-
sive to recover from. For example, a head
crash on disk may destroy not only the data
but also the recovery data. It would there-
fore be preferable to maintain the recovery
data on a separate device. However, there
are other failures which may affect the sep-
arate device as well--for example, failures
in the machinery that writes the recovery
data to that storage device.

Recovery data can itself be protected
from failures by yet further recovery data
which allow restoration of the primary re-
covery data in the event of its corruption.
This progression could go on indefinitely.
In practice, of course, there must be reli-
ance on some ultimate recovery data (or

rather, acceptance that such recovery data
cannot be not totally reliable).

Techniques and utilities that can be used
for recovery, crash resistance, and main-
taining consistency after a crash are de-
scribed in this survey. Included are descrip-
tions of how data structures should be con-
structed and updated, and how redundancy
should be retained to provide recovery fa-
cilities. This survey deals with recovery for
data structures and databases, not with
other issues that are also important when
processes operate on data, such as locking,
security, and protection [LIND76].

One possible approach to recovery is to
distinguish different kinds of failures based
on two criteria: 1) the extent of the failure,
and 2) the cause of the failure. The three
kinds of failures typically distinguished in
many database systems are: a failure of a
program or transaction; a failure of the total
system; or a hardware failure. Different
"recovery procedures" are then used to
cope with the different failures. A good
description of such an approach to recovery
has been given by Gray [GRAY77].

However, recovery is approached from a
different angle in this paper. To be able to
recover, two kinds (i.e., functionally differ-
ent kinds) of data are distinguished: 1) data
structures to keep the current values and 2)
recovery data to make the restoration of
previous values possible. This paper exam-
ines:

• how these data structures and recovery
data can be structured, organized and
manipulated to make recovery possible
(all this is referred to as the recovery
technique);

• how the data structure can interact
with the structure of the recovery data;

• what kinds of failures can be coped
with by the different organizations;

• what kind of recovery {e.g., restoration
of the state at time of failure, the pre-
vious state, and so on) can be provided
using these organizations;

• and how different techniques can be
combined in one system to cope with
different failures or to provide different
kinds of recovery (e.g., one technique
may be used as a fall back for another
one).

Computing Surveys, Vol 10, No. 2, June 1978

Recovery Techniques for Database Systems • 169

T he first approach used in most commer-
cially available data base systems is based
on the requi rement tha t the system be able
to undo, redo, or complete transactions. A
transaction is the unit of locking and re-
covery; it therefore appears to the user as
an atomic action. The recovery techniques
considered in this paper can be used to
implement this atomic proper ty for user
actions on the database, but the techniques
are described from the data structuring
point of view.

For the purpose of this survey the notions
of filing system and database system are
t rea ted as synonymous. The definition of
the notion of database given by Mart in
[MART76] is used here: A database is a
collection of related storage objects to-
gether with controlled redundancy to serve
one or more applications; the data in the
database is stored so as to be independent
of programs using them; a single approach
is used to add, modify, or retr ieve in the
database.

A database may consist of a number of
files. A file is a logical unit in the database,
used to group data. The data tha t can be
retr ieved by users from the database forms
the information in the database. Thus, if
some of the data stored in the database
becomes irretrievable, some information is
lost.

The concepts of database, file, and infor-
mat ion are logical. The physical database
is held in secondary storage. Secondary
storage is nonvolatile storage space, which
retains the database whether or not it is
online (mounted on a storage device unit
and readable by computer) . Secondary
storage consists of physical records, which
are the smallest accessible units. Records
are read or wri t ten by a storage device unit
at the request of the computer .

A database is an abstract ion of secondary
storage provided to the user by the data-
base system. The database system imple-
ments the user operations on the database
and implements the data s t ructures on sec-
ondary storage. Objects are the substruc-
tures f rom which these data s t ructures are
built. Examples of objects are: a logical
record, a header of a file, a linked list of
pages or logical records, and an ent ry in a

directory. Objects are mapped onto records
which comprise secondary storage.

Users may add, delete, and update data.
The database is in a correct state if the
information in it consists of the most recent
copies of data put in the database by users
and contains no data deleted by users. A
database is in a valid state if its information
is par t of the information in a correct state.
This implies tha t there are no spurious
data, a l though some information may have
been lost. A database is in a consistent state
if it is in a valid state, and the information
it holds satisfies the users' consistency con-
straints.

I t is assumed here tha t a correct state is
also a consistent state. For example, if a
machine is suddenly halted, and a database
state is defined at tha t time, then this state
is called the correct state. If no state is
defined for the database when the machine
is halted, a salvager can be run to delete
parts of the database in order to restore the
system to a defined state: a valid state. If
this salvager also makes sure tha t user's
consistency constraints are maintained,
then the restored state is a consistent state.

Consistency will have to be a well-defined
notion for every database. Different sorts
of consistencies (possibly at different levels
of abstraction) or degrees of consistencies
[GRAY76] may be defined. No more precise
definition of consistency will be given here.

To illustrate these definitions with an-
o ther example, consider a user who main-
tains a source file, and an object file which
has been produced by compiling the source
file. Th e database will then be in a correct
state if the most recent source and object
files are available. The database will be in
a valid state if a source file and an object
file, but not necessarily the most recent
ones, are available. Th e database will be in
a consistent state only if corresponding
source and object files are available.

A failure of the system occurs when tha t
system does not meet its specifications. Re-
covery is the restorat ion of the database
after a failure to a state tha t is acceptable
to the users. Th e notion of "acceptable" is
different for different environments; in gen-
eral, "acceptable" will mean correct, valid
or consistent. A recovery technique pro-

Coraputmg Surveys, Vol. 10, No 2, June 1978

170 • J. S . M . Verhofstad

vides recovery from certain kinds of fail-
ures. Within a single system, there may be
several different recovery techniques cor-
responding to different kinds of failures.
However, it is common to structure the
techniques into a hierarchy; the most gen-
eral ones deal with the largest set of fail-
ures, but are the most expensive. The re-
covery technique for the smallest set of
failures is usually the most efficient tech-
nique and involves minimal loss of infor-

marion. An example of this is given below
and illustrated in Figure 1.

A recovery technique maintains recovery
da ta to make recovery possible. It provides
recovery from any failure which does not
affect the recovery data or the mechanisms
used to maintain these data and to restore
the states of the data in the database. Fail-
ures are classified into two groups with
respect to a recovery technique. A failure
with which a recovery technique can cope

The states assumed durlng

processlng without

failures.

The states that can be

assumed in B.

C , / % The states that can

be assumed in C.

D ~ / The states that can

F be assumed In D.

The states after

fallures from whlch

no recovery is

posslble.

FIGURE 1. T h e s ta te space ~ r a da tabase s y s t e m with severM recovery t echmques , coping with subsequen t ly
larger s e t of h f lu res .

CompuUng Surveys, Vol 10, No 2, June 1978

Recovery Techniques for Database Systems

is a crash of the system with respect to that
recovery technique. A failure with which a
recovery technique cannot cope is called a
catastrophe with respect to that technique.

A system using three recovery techniques
could, for example, consist of the following
subsystems (see also Figure 1):

A) The database system without any re-
covery techniques.

B) "A" plus a recovery technique that
uses built-in redundant pointers in
data structures to be able to recover
from certain failures causing partic-
ular errors in the data structures.

C) "B" plus a recovery technique that
does not use built-in redundancy in
data structures, but maintains
backup copies of (parts of) the data
structures.

D) "C" plus a recovery technique that
keeps a complete backup copy of the
database on a separate device.

These systems could be built using an
approach similar to the "safe-program-
ming" approach described by Anderson
[ANDE75]. The bigger the damage, the cru-
der the recovery technique used. Restora-
tion of the correct state is most desirable
and can be done, say, in B. However, if the
damage is such that recovery in B is not
possible, then restoration to a consistent,
but not necessarily the correct, state may
be the only alternative in C.

No single recovery technique or series of
recovery techniques can cope with every
possible failure. Many different kinds of
recovery procedures have been developed,
each technique with its own particular ad-
vantages and disadvantages, but each ena-
bling the system to cope with different
kinds of failures in different environments.

In the following sections the categories of
recovery techniques known and used at
present are briefly described; the kinds of
recoveries they provide and the relation-
ships among the techniques are given. Next,
the different techniques are defined and
described in detail, along with a considera-
tion of the purposes for which they can be
employed, and of the systems which use
them. Finally, some conclusions are drawn
and some recent trends are described.

171

OVERVIEW OF RECOVERY TECHNIQUES

Different kinds of recovery are possible for
a database. The "kinds of recovery" that
we consider are in fact "qualities of recov-
ery," which can be useful in comparing and
evaluating different recovery techniques.
The kinds of recovery considered are:

1) Recovery to the correct state.
2) Recovery to a correct state which ex-

isted at some moment in the past (i.e.,
a checkpoint).

3) Recovery to a possible previous state;
this would allow, for example, resto-
ration of a set of previously existing
states of files that may not have ex-
isted simultaneously before.

4) Recovery to a valid state.
5) Recovery to a consistent state.
6) Crash resistance (explained below).
Crash resistance is provided if the nor-

mal algorithms of the system operate on
the data in such a manner that after certain
failures the system will always be in a cor-
rect state, i.e., the state the system was in
before the last operation on the data was
started (or possibly the last series of oper-
ations). Thus, crash resistance obviates the
need for recovery techniques to cope with
a certain class of failures.

Crash resistance differs from other kinds
of recovery. Whereas other kinds of recov-
ery explicitly restore states, crash resist-
ance maintains correct states by the way
data are manipulated and maintained dur-
ing normal processing. Thus, in a sense,
crash resistance restores states implicitly.
These differences are fully explained later
in this survey. The notion of crash resist-
ance cannot be made more precise than the
notion of consistency, for the two are re-
lated. However, it is not necessary to be
more precise to achieve the objectives of
this survey.

A checkpoint is a (presumably correct}
past state; it may have been made by re-
cording the past state explicitly. Check-
points are used by recovery techniques of
kinds 1, 2 and 3 (but not necessarily 4 and
5, see definitions). Checkpoints can be es-
tablished either for files or for the whole
database. The creation of a checkpoint is

Computing Surveys, Vol 10, No 2, June 1978

172 • J. S. M. Verhofstad

called checkpointing. Establishing a check-
point explicitly creates a backup version,
which is a complete copy of the check-
pointed file (or database). The term back-
ing up means restoring the state of the
previous checkpoint.

"Backing up" should not be confused
with a different term, "backing out." The
term backing out is related to processes or
transactions. A process is backed out if all
the effects of the operations performed by
that process are undone. This means that
only the files affected by the process need
to be restored. Backing out of some proc-
esses may be required, for example, to re-
solve a deadlock or to undo the operations
of a failing process. Backing out is a special
sort of recovery of kind 3: only the data
affected by the programs that are backed
out are restored. So the total database is
restored to a state which has been termed
a "possible previously existing state."

For the purpose of this paper, techniques
used for recovery, restart, and maintenance
of consistency are divided into seven cate-
gories. (This categorization is, of course, not
the only possible one.) The remainder of
the survey deals with these seven recovery
techniques. Systems described in the com-
puter literature are used to illustrate how
the recovery techniques have been imple-
mented. Some of the systems described
may have been changed over the past few
years, so the descriptions of all systems may
not be up to date anymore. However, the
purpose of the examples is to illustrate how
the techniques have been used, rather than
to give accurate up-to-date descriptions of
actual systems.

1) Sa lva t ion p r o g r a m A salvation
program is run after a crash to restore
the system to a valid state. It uses no
recovery data. (It is the only tech-
nique considered here which does not
use recovery data.) It is used after a
crash if other recovery techniques (us-
ing recovery data) fail or are not used,
or if no crash resistance is provided.
This program scans the database after
a crash to assess the damage and to
restore the database to some valid
state. It rescues the information that
is still recognizable.

2) Incremental dumping Incre-
mental dumping involves the copying
of updated files onto archival storage
(usually tape) after a job has finished
or at regular intervals. It creates
checkpoints for updated files. Backup
copies of fries can be restored after a
crash.

3) Aud i t t ra i l An audit trail records
sequences of actions on fries. It can be
used to restore fries to their states
prior to a crash or to back out partic-
ular processes. It can also be used for
certifying that rules and laws are ob-
eyed in the system. An audit trail
provides the means to back out a proc-
ess whereas incremental dumping
merely provides the means to restore
fries to previous consistent states.

4) Dif ferent ia l files A file can con-
sist of two parts: the main file which
is unchanged, and the differential file
which records all the alterations re-
quested for the main file. The main
fries are regularly merged with the
differential files, thereby emptying the
differential fries. Records in the differ-
ential files can be stored with the
process identifier, a time stamp, and
other identification information to
provide such special facilities as au-
diting, recovery, or crash resistance. A
differential file is a type of audit trail,
but the actual updates have not yet
occurred. The differential file can also
be used to implement crash resistance.

5) Backup/current version The
fries containing the present values of
existing files form the current version
of the database. Files containing pre-
vious values form a consistent, backup
version of the database. Backup ver-
sions can be used to restore files to
previous values.

6) Multiple copies More than one
copy of each file is held. The different
copies are identical except during up-
date. A "lock bit" can be used to pro-
tect a file during updating, while its
state is inconsistent. If there is an odd
number of fries, comparison can be
done to select a consistent version.
This technique provides crash resist-

Computing Surveys, Vol. 10, No 2, June 1978

Recovery Techniques for Database Systems • 173

ance; it may be used to detect faults
if the different copies are kept on dif-
ferent devices or handled by different
processors.

The difference between multiple
copies and backup/current version is
like the difference between TMR and
standby: with multiple copies all cop-
ies are active, while with backup/
current version there is only one ac-
tive copy {other copies could even be
off-line).

7) Careful r ep l acemen t The prin-
ciple of the careful replacement
scheme avoids updating any part of a
data structure "in place." Altered
parts are put in a copy of the original;
the original is deleted only after the
alteration is complete and has been
certified. The difference between this
and the other methods is that two
copies exist only during update. The
technique is used to provide crash re-
sistance, for the original will always
be available in case a crash occurs
during update.

A cross-reference table between the cat-
egories of recovery and the recovery tech-
niques is given in Figure 2. Strictly speak-
ing, the table is incomplete because, for
example, an audit trail or differential files
can be used to restore a valid state. How-
ever, missing cross-references indicate tech-
niques that would never be used for those
purposes since one can always do better
(e.g., restore the correct state rather than a
valid state).

From the description of the techniques
in Figure 2 the following relationships be-

tween the techniques are apparent:
• The differential file technique makes

incremental dumping very easy to im-
plement. Incremental dumping, in gen-
eral, copes with failures that the differ-
ential file technique cannot handle
{this is not apparent from Figure 2).
However, the kinds of recovery pro-
vided by the differential File techniques
are preferable to those provided by in-
cremental dumping (as shown in Fig-
ure 2). Thus, the two techniques may
complement each other very well.

• The audit trail technique is an alter-
native to differential files, careful re-
placement, or multiple copies; it can be
used to restore the correct state after
a crash. It is therefore seldom used in
practice in conjunction with these
other methods, although it may be
used in combination with one of them
in order to provide (the same kind of)
recovery from different failures. The
audit trail can thus be used to provide
recovery from the failures for which
the other techniques are also used,
even though audit trail may be less
efficient.

• Multiple copies and careful replace-
ment may be used either as alterna-
tives or as complements which provide
crash resistance against similar types
of failures. (We will return to this
shortly.)

• Also the incremental dumping, the au-
dit trail, the differential files, and the
backup/current version techniques can
be used as alternative techniques to
provide recovery from particular fail-

1)Cor- 2) Pre- 3) Pos. 4) 5) Con- 6)
rect wous Prev Vahd slstent Crash

State State State State State Res~st-
ence

S a l v a t i o n P r o g r a m * *

I n c r e m e n t a l D u m p i n g * *

A u d i t T r a i l * * *

Diff . F i les * * *

B a c k u p C u r r e n t * *

M u l t i p l e C o p i e s *

C a r e f u l R e p l a c e m e n t * *

FIGURE 2. A c r o s s - r e f e r e n c e t a b l e i n d i c a t i n g fo r w h a t p u r p o s e s t h e v a r i o u s r e c o v e r y t e c h n i q u e s c a n b e u s e d

Comput ing Surveys, Vol. 10, No. 2, June 1978

174 • J. S. M. Verhofs tad

ures or to complement each other to
provide (the same kind o0 recovery
from different failures.

• The salvation program as a recovery
technique is a last resort, used if all
othe~ techniques fail. I t cannot bring
the database back to a previous state.
It merely rescues what is left. However,
a salvation program can be used as a
recovery technique for recovery data
ra ther than for the database. For ex-
ample, a salvation program can be used
to restore the audit trail immediately
after a failure of the system. The re-
s tored audit trail can then be used to
restore the database. In this case the
salvation program is used ra ther early.

The seven techniques under discussion
provide recovery, crash resistance, and
maintenance of consistency in one of three
ways:

• The way in which the data is struc-
tured. The multiple copies, differential
files and backup techniques are par t of
the s t ructure of the database.

• T he way in which the data is updated
and manipulated. The careful replace-
ment technique is a crash-resistant
way of updating complex data struc-
tures. I t has been shown [VERH77b]
tha t this also sets special constraints
and requirements for the data struc-
tures.

• The provision of utilities. T h e salvation
program, incremental dumper and au-
dit trail facility are utilities which have
nothing to do with the way in which
the data is s t ructured or updated. T h e y
could be regarded as external utilities
which can usually be added to any
database system without great diffi-
culty.

Unfortunately, this division of the tech-
niques into three groups is too coarse: it
can be misleading in cases where different
techniques in one group complement each
other or different techniques from different
groups are alternatives. The seven tech-
niques are therefore discussed separately,
and examples are given of systems on which
they are implemented.

SALVATION PROGRAMS

A salvation program in a database system
is used after a crash to restore the database
to some consistent state. Th e salvation pro-
gram tries to restore the state of the data-
base as it was before or at the t ime of the
failure. However, some files or data may be
lost. A salvation program scans through the
data s t ructures and tries to reconstruct the
database or restore consistency, possibly at
the cost of deleting some files or data.

A salvation program is needed after a
crash if the data kept on secondary storage
is not kept in a consistent s tate all the time,
or if no other recovery technique is avail-
able to cope with the failure. Otherwise
there is no need for such a program.

One reason the data on secondary storage
might be inconsistent af ter a crash would
be the loss of buffers kept in main storage.
Some inconsistent files may have to be
deleted because of [SMIT72]: violation of
s tandard error checks on reading a file;
conflict resulting from the same storage
having been assigned to more than one file;
or conflict (e.g., on the file length) deter-
mined from redundan t information (e.g.,
f rom a file header).

A system may use data buffers (for the
database) and audit buffers (for audit
tapes). After a crash there may be no way
to tell which updates recorded in the audit
trail have been wri t ten to the database and
which were still in data buffers; there may
be no way to tell which successful updates
were recorded on audit trail tape or were
still in audit buffers at the t ime of the crash.
Thus, the audit trail may not succeed in
restoring the database to its state at the
point of failure.

Several systems such as IMS [IBM] or
the CMIC system [GIoR76], when running
on machines using core storage, first use a
salvation program which tries to rescue the
contents of the buffers in main storage in
order to close the audit trail tapes properly.
However, if the contents of main storage
are lost, res torat ion of the correct state is
not possible.

At present LSI memories are widely
used. However, the contents of LSI mem-
ories generally do not survive power fail-

Computing Surveys, Vol 10, No 2, June 1978

i!

¢

¢:

%

Recovery Techniques for Database Systems • 175

ures. IMS therefore has implemented, in
the last few years, the "log tape write ahead
protocol." This procedure forces the audit
trail to be written before the object in the
database is written. Thus, buffers can still
be used as long as the system conforms to
the "protocol."

A system in which a salvation program is
of great importance is the HIVE system
[TAYL76] (here the program is called the
recovery procedure). The system consists
of a fLxed number of virtual processors
(VPs) which are assigned permanently to
execute cyclically particular functional ap-
plication programs. A processor cycle, per-
forming such a particular function, is trig-
gered by a message received from another
VP or from outside the network of VPs.
Capabilities (descriptions for resources
available) for the necessary code and per-
manent data areas are given to the VPs at
system build time, and the message routes
between VPs are also set up permanently.

Only the files for which permanent ca-
pabilities have been created at system-ini-
tialization can be restored after a crash.
Thus, a possible previous state of the sys-
tem is restored: the files that existed at
system initialization time are restored to
the states they were in before the current
transactions started. Also:

• transaction checkpoints can be made
I by writing the data of each transaction
i n t o a common, permanent, safe-

guarded checkpoint file, which can be
accessed and recovered after a crash;
and

• files may be created dynamically and
capabilities for them may be put in
special files called cap-files.

The recovery procedure run after a crash
restores in main memory the read-only im-
age, which also contains recovery code. The
main task of the recovery procedure is a
garbage collection by scanning all files in
the database. Files whose capabilities are
kept in cap-files are processed first. These
files were created after system initialization
and can be restored (using the cap-files) to
the states they were in before the current
transactions were started. The system is
thus restored to a possible previous state
which is an enhancement of the possible

previous state that could be restored with-
out the use of the cap-files.

This state can be yet further enhanced
by the use of checkpoint files. The check-
point files can be used to restore files to a
checkpoint state; thus, the processing of
transactions can be restarted from check-
points. For each version of each file (several
versions of each file are maintained) the
check sums are evaluated to detect partially
updated and corrupted pages; where possi-
ble, the appropriate updating and back-
tracking from other versions is carried out.
(Only one version can be corrupted during
a crash because different versions were kept
on different disks, and only one version is
updated during a transaction. The other
versions are updated only after transactions
are completed and the updated version is
in a new correct state. A corrupted state
can be detected using the check sums. Only
a catastrophe, such as a fire in the computer
center, could corrupt more than one ver-
sion.)

Other systems in which a salvation pro-
gram is used to recover the disk contents
after system failure have been described,
for example, by Lockemann and Knutsen
[LocK68], Daley and Neumann [DALE65]
(salvage procedure), Fraser [FRAS69]
(start-up procedure), and EMAS [EMAS
74]. (See also the surveys in [TONI75] and
[MASC73].)

INCREMENTAL DUMPING
Incremental dumping is used to copy up-
dated files onto archive storage (usually
tape); it checkpoints files that have been
altered. Incremental dumping is normally
done after a job is finished, but can also be
done at regular intervals, while continued
use is made of the files, thereby providing
more frequent checkpoints. After a crash
has occurred the incremental dump tapes
can be used to bring all the files to their
previous consistent state, so that jobs com-
pleted before the crash will not be lost. All
updates performed by jobs running at the
time of the crash may not be restored com-
pletely by the processing of the incremental
dump tape after a crash, because some ac-
tive files may not have been dumped in
time.

Computing Surveys, Vol 10, No 2, June 1978

176 • J . S . M . V e r h o f s t a d

Fraser [FRAS69] gives a very good de-
scription of the technique used at Cam-
bridge, which makes complete copies of
updated disk files every 20 minutes. (See
a l so [WILK75] .)

In the original MULTICS system [DALE
65] all disk files updated or created by the
user are copied when the user signs off. All
newly created or modified files, which have
not previously been dumped, are also cop-
ied to tapes once per hour. The original
MULTICS scheme provides high reliabil-
ity. However, overheads in resources and
processing time are far too high; recovery
time after failure is too high; and the system
must be shut down periodically for backup
purposes. It is most discouraging that the
situation steadily worsens with system
growth.

The design of a greatly improved backup
mechanism has been described by Stern
[STER74]. It is based upon the original
backup mechanisms contained in the MUL-
TICS system. Compared with the original
system, this new design lessens overhead,
drastically reduces recovery time from sys-
tem failures, eliminates the need to inter-
rupt system operation for backup purposes,
and scales up significantly better with on-
line storage growth. Some of the major
features of this new scheme are:

• Incremental dumping is used to keep
the backup system up to date.

• A complete secondary dump super-
sedes the complete incremental dump-
ing history of the system: Rather than
dumping the entire secondary storage,
the procedure updates a checkpoint of
the total system. A partial secondary
dump supersedes part of the incremen-
tal dumping history. Secondary dumps
are similar to change accumulation sets
in IMS [GRAY77].

• A shadow copy of a file can be created
to make sure that the incremental
dumper dumps a consistent version.

• Each storage device holds a complete
subtree or several subtrees of the
file hierarchy (the MULTICS file sys-
tem is organized as a tree of files [DALE
65]). This minimizes the effects of the
loss of one device.

• After a failure a "salvager" is used to

correct, detect, and report wherever
possible any inconsistencies in the file
hierarchy and storage tables. The sys-
tem can be made available immedi-
ately after this; some files may still
need to be reloaded, but they are
marked as such. Directories and sys-
tem files are reloaded first in order to
make the system available to users
again as quickly as possible. There are
parallel processing capabilities for the
reloading operation; and no unneces-
sary searches on dump tapes are made
by the reloader. Only missing files are
reloaded.

• The dumper can avoid unnecessary
searching in the tree because of the use
of dates and times in the directories in
the tree. Also the reloader avoids un-
necessary searches and file reloads.

The currently used recovery techniques
in MULTICS are similar to those described
by Stern. However, since the publication of
Stem's thesis a major change has been
made to the MULTICS filing system: a new
and very different storage system has been
incorporated. The backup system has also
been changed to deal with the new storage
system. The concept of logical volumes has
been introduced. A logical volume encom-
passes a set of real devices. The directory
hierarchy is on a separate volume, and any
directory in the hierarchy can be placed on
a new volume, with all its decendants on
the same volume. For dumping onto tape a
volume dumper is used which dumps one
volume at a time; no tree walk is used. Each
physical device has a contents table which
is a list of pages of the segments on the
device. Incremental dumping is done for
pages on volumes rather than files. Thus,
the scheme used is basically the same as
the one proposed by Stern, but used at a
lower level (for volumes and pages rather
than for the hierarchy of files).

The EMAS system [EMAS74] provides
an automatic checkpointing facility for
fries. Files are part of the user's virtual
memory and cannot be accessed through
the paging mechanisms until they have
been connected {i.e., the virtual memory
disk address mapping has been set up).
When a user process is created, its virtual

Computing Surveys, Vol 10, No 2, June 1978

Recovery Techniques for Database Systems • 177

memory space is created, initialized, and
copied to disk. When the process is run, the
working set is in main memory, and pages
are transferred back and forth between core
and drum. A page may be forced to disk
because the drum gets full, or the process
becomes dormant again. If a page is forced
to disk, all of the updated virtual memory
pages are forced to disk at the same time.
This mechanism is required by the "con-
sistency" rule in the EMAS system. There-
fore, a suitable restart copy of the virtual
memory of a process (which includes the
fries) is provided on the disk. The problem
of inconsistencies between the state of the
process and the states of its associated files
is avoided because the filing system uses
the resources provided by the paging sys-
tem. The paging system assumes complete
responsibility for maintaining a consistent
backup copy of all the state variables of the
process (including files). Consequently, if
the consistency rule is always obeyed, au-
tomatic checkpointing is provided.

Incremental dumping can be done as part
of an audit trail scheme [MAsC71, RAND 70,
MASC73]. An audit trail gives only the
changes made to files from given states
onwards. These states are redefined regu-
larly for reasons of efficiency (so that audit
trail journals do not become too long). For
example, in a system described by Wim-
brow [WIMB71], files are dumped when
they have to be reorganized because they
have become disorderly as a result of the
operations performed. In the CMIC system
[GIOR76] all fries are checkpointed regu-
larly at moments when no user has the
database open.

Another scheme designed for System R
[LoaI77], but not implemented, works as
follows (see Figure 3): Each segment (which
is similar to the concept of file) consists of
a page table with pointers to the data pages.
Associated with each pointer in the page
table are three bits: a shadow bit, a cumu-
lative shadow bit, and a long term shadow
bit. When a segment is updated a backup
and a current copy are maintained (in a
way to be described later). For every page
which is updated, the shadow bit and cu-
mulative bit are set in the page table entry
of the segment containing the page. Thus,

for example, in Figure 3, pages 13, 6, and 21
are updated and therefore replaced (for rea-
sons described later), in this case by pages
5, 3, and 19. The shadow bits and cumula-
tive shadow bits for those pages are, there-
fore, set in the current page table. The
cumulative shadow bits for pages 8, 21 (now
replaced by 19), 10, and 4 were set already.

When the current state of the segment is
saved (i.e., replaces the old copy), the
shadow bits are switched off, and the old
pages of the backup version, having been
replaced by the new versions from the cur-
rent copy, are released. Checkpoints of all
the segments are taken regularly. This in-
volves the copying of all the page tables for
which at least one cumulative shadow bit is
switched on; the cumulative bits are copied
into the long term bits and then switched
off. A process P is started periodically.
Process P is a system process which copies
onto tape all of the pages of all segments in
the systems for which the cumulative
shadow bit is on at checkpoint time. The
long term checkpoint bits are used to make
sure that subsequent saves will not release
the pages before P has copied them.

If in Figure 3 the transaction were closed
in the situation shown, the contents of the
current page table would be copied into the
backup page table. If, subsequently, a
checkpoint of the segment page table were
taken, the cumulative shadow bits would
be copied into the long term shadow bits,
involving the setting of the long term
shadow bits for pages 4, 10, 19, 3, 8, an d 5.
All of the cumulative shadow bits would
then be switched off.

A special checkpoint file is used in HIVE
[TAYL76] to record transactions. Informa-
tion put in the checkpoint files can be re-
covered after a crash to restart those trans-
actions. Individual transactions can also be
reprocessed using this file.

AUDIT TRAIL

An audit trail records the sequence of ac-
tions performed on a file [BJOR75]. The
audit trail contains information about the
effects of the operations, the times and
dates at which the operations occurred, and
the identification codes of the user (or user
programs) issuing the operation.

Computing Surveys, VoL 10, No 2, June 1978

178 J. S. M. Verhofstad

DATA PAGES

SEGMENT Sp
current page table

!
4 .. 7 [0 I19 3

0 0 0 I] - 1

1 0 1 1 1

0 0 0 0 0

8 Fs

0 1

i !l

0 0

27

0 s.b.

0 c.s.b.

0 l.t.s.b.

MASTER

backup page table

4 7 [0 21

0 0 0 0

1 0 1 1

0 0 0 0

6 8 13 27

0 0 0 0

0 1 0 0

0 0 0 0

1 2 3 4 5 6 7 8 9 i0 ii 12 13

I0 0 0 1 0 1 1 1 0 1 0 0 1 o • m

I __

bl~
map

bit
map

FIGURE 3. The implementation of segments in System R.

Audit trails can be used for several dif-
ferent purposes, such as:

• Crash recovery. If backup versions of
files are reinstalled, an audit trail can
be used to perform operations on them,
thereby restoring their states at the
time of the crash [CURT77].

• Backing out. If a system crashes (with-
out damaging secondary storage) the
files affected by the processes running
during the failure can be restored to
their states before those processes

started. The audit trail can be pro-
cessed backwards for backing out. Also,
a single transaction (or job) can be
backed out in case a deadlock occurs or
the transaction fails. The data affected
by the transaction can be restored to
their state before the transaction (or
job) was started.
Certifying system integrity. The audit
trail can verify that rules and policies
dictated by laws, business agreements,
and the like, are being followed [BJOR

Computmg Surveys, Vol 10, No 2, June 1978

Recovery Techniques for Database Systems • 179

75]. Bjork has concluded that audit
trails will be the major integrity tools
for shared data usage beginning in the
late 1970s. However, there are reasons
to believe that other techniques will
also be used. For example, the tech-
niques of differential files and incre-
mental dumping could provide the
same facilities, although in a more
complicated way.

A very extensive description of the use of
audit trails for crash recovery and backing
out has been given by Gray [GRAY77].

Traditional recovery techniques for filing
systems [FRAS69, WILK75] may be insuffi-
cient to prevent the loss of the changes
caused by the most recent operations per-
formed in the filing system. The usual
method, incremental dumping, checkpoints
the files at regular intervals, but operations
performed on files after the last checkpoint
will be lost if a crash occurs. This does not
matter in many operating systems because
jobs can be resubmitted or operations can
be redone. However, in systems where up-
dates are made online from different
sources, such as in banking or airline res-
ervations [MASC71, RAND70, WIMB71,
TONI75], this method may be unacceptable:
one cannot afford to lose any update should
such systems fail.

Another reason that traditional recovery
techniques for filing systems may be insuf-
ficient is that data management systems
are physically organized very differently
than filing systems {some implementations
of relational database systems might be
said to be exceptions to this general rule).
The difference in design parameters would
make a scheme such as Fraser's unsuitable
for most data structures used in existing
database management systems. In systems
like these an audit trail can provide a solu-
tion. Before a transaction is performed in
the database, it is recorded on the auditing
tape; this procedure is carried out without
buffers [WIMB71] or by implementing a
"log tape write ahead protocol" [GRAY77]
to protect against crashes that destroy the
mainstore contents.

Buffers (see Figure 4) may lead to incon-
sistencies between the database and the
audit trail [GIoR76]. If the buffers are lost

after a crash the database will, in general,
be in an inconsistent state, and the audit
trail will be incomplete; so it cannot be used
to restore the correct state (as illustrated in
Figure 4). (However, another possibility
would be to salvage the buffers from main
storage after a system crash, thus making
possible the proper closing of the audit trail
tape. This has been tried, not always with
success, in IMS [IBM] systems using core
memory and in the CMIC system [GIoR
76]. The buffers cannot be salvaged if the
contents of main storage are lost after the
crash.) The log tape write ahead protocol
avoids this problem.

The audit trail can be used to back out a
process which may have interacted with a
second process in such a way that the sec-
ond process will have to be backed out. The
audit trail can then be used to back out
that second process which may have inter-
acted with a third process, and so on. Thus,
using an audit trail to back out unfinished
transactions performed by interacting proc-
esses, can lead to a "domino" effect [RAND
75, GIOR76, CURT77].

A locking scheme, such as the one used
in system R [ASTR76] and many commer-
cially available systems [CURT77], can be
used to avoid these problems by making
these interactions impossible. This solution
can only be applied if these interactions are
not necessary (i.e., they are accidental
rather than deliberate). The backing
scheme will make it possible to use an audit
trail (or a "log" as it is called in many
systems) to undo partially finished trans-
actions.

Special checkpoints made at moments
when no user is active [Gloa76], have been
proposed, since it is not possible to back up
past such checkpoints, and thus the domino
effect would be halted at these points. How-
ever, such occasions occur too infrequently
in busy systems for this scheme to be help-
ful; frequent forcing of all users to become
inactive would be impractical.

Another form of audit trails appears in a
system described by Lampson and Sturgis
[LAMP76], under the name of intention
lists. An intention list specifies the opera-
tions to be performed by a processor. A
processor, which is a node in a network,

Computing Surveys, Vol 10, No. 2, June 1978

180 • J.S.M. Verhofstad

Users processes

Data Base
Buffers

CURRENT DATA BASE

Data Base on.
Secondary
Storage

CURRENT AUDIT TRAIL

. f

The current data base is always consistent wlth the
current audit trail, however the data base on secondary
storage is, in general, not conslstent wlth the audlt
trail on secondary storage.

FIGURE 4, A general database system using audit trad.

may receive an intention list, containing
the specifications of the operations to be
performed on its local database. Intention
lists, like the audit trail used in the CMIC
system [GIoR76], can be reprocessed with-
out backing out the interrupted process.
Intention lists, once received and accepted,
cannot be lost unless a catastrophe occurs,
such as a head crash. They are safeguarded
because they are stored on disk at a fixed
place and are not altered when processed.
Unless the processor malfunctions, the op-
erations specified in the intention list will
always be done.

Whereas audit trails record completed

database updates, intention lists contain
operations not yet performed (although
physically the audit trail may be written
first, as is the case when log tape write
ahead is used). In other words, issuing an
intention list is an event that could be reg-
istered in the audit trail. Processing the
intention list is similar to processing an
audit trail during crash recovery or backing
out.

DIFFERENTIAL FILES

Under the differential file (also called
"change set") scheme the main files are

Computing Surveys, Vol. 10, No 2, June 1978

Recovery Techniques for Database Systems • 181

kept unchanged until reorganization. All
changes that would be made to a main file
as a result of transactions performed are
registered in a differential file. The differ-
ential file will always be searched first when
data is to be retrieved. Data not found in
the differential file is retrieved from the
main database. The most recent entry for
a given record in the differential file must
always be retrieved.

Severance and Lohman [SEVE76] fully
describe the technique, and also an efficient
hashing method to implement it (see also
Figure 5). They use a small associative
memory, in the form of a bit map accessed
by the hashing scheme, to reduce the prob-
ability of making an unnecessary search in
the differential file. The database system
checks the bit map (see Figure 5) to see if

the bits for a record are set or not before
accessing that record. If the bits are set the
record is probably in the differential file. It
is shown analytically how to keep the prob-
ability of a filtering error low; this error
occurs only when the bit map suggests
wrongly that a record is in the differential
file. The hashing function maps the record
address onto a number of bits in the bit
map (see Figure 5). The bits for a particular
record may be set because each of them
occurs in at least one set of bits associated
with another record in the differential file.

Severance and Lohman [SEVE76] also
describe the advantages of differential files
for recovery, integrity, the implementation
of incremental dumping schemes, and the
simplicity of software. Another advantage
claimed is the possibility of performing

The data base

read/wrlte
differential
file

read-only data base

The data base
system operating
on the data base

blt map

[I i01 OlOlO 1 1 0

hashing functlon (record r) = -bit pattern-

The blt map suggests that record r is in the differential
file, because the blts set in the bit patterns produced
by the hashing function are set in the bit map.

FIGURE 5. A ~ f f e r e n t i ~ Me techmque using a h ~ h i n g s c h e m e .

Computing Surveys, Vol 10, No. 2, June 1978

182 • J. S. M. Verhofs tad

queries which do not need the exact values
of all files; such queries access a suitable
(current) view of the data without locking
out the update transactions.

The disadvantages of the approach using
differential files are [Lore77]:

• An access to a data element appears
slow: if an initial search of the differ-
ential file reveals that the data element
is not among the modifications, the
required element must be fetched from
the database. However, Severance and
Lohman show that this problem can be
almost completely overcome with
hashing for many systems and appli-
cations; they also show how to con-
struct a good hashing scheme for par-
ticular systems.

• Eventually the differential file must be
merged with the main database--an
operation which can be slow. This will
certainly be a big problem if the system
needs to be available without interrup-
tion.

• Since an update can affect an element
which has already been modified, the
differential files must be suitably or-
ganized. A hashing scheme [SEvE76,
RAPP75] ameliorates this problem.

Differential files are, for example, used in
the VADIS system, where they are called
MODFILEs [RAPP75]. For every file in the
system there is a MODFILE. The system
has been developed to facilitate recovery
after power failure. Completed transactions
will never have to be undone after a power
failure. Transactions not completed before
the failure are not undone explicitly; but
their effects are ignored using the MOD-
FILEs and a TRNSDONE file as follows:

1) Each entry in a MODFILE has a
header with: record type, transaction
code, pointer to previous modification
of the same record, time, transaction
number and some other identification
codes.

2) There is a TRNSDONE file which
contains the numbers of the com-
pleted transactions.

3) For every record fetched from a
MODFILE the transaction number is
compared with the TRNSDONE
numbers and the current transaction
number.

4) If the number is neither in
TRNSDONE nor is the number of the
current transaction, then the previous
version of the record is taken (the one
pointed to by the retrieved entry from
the MODFILE, or in the main file),
because this means that the record
was put in the MODFILE by an un-
completed transaction before a fail-
ure.

5) MODFILE entries and system varia-
bles are forced out to disk at the end
of each transaction. Thus the entire
MODFILE mechanism is check-
pointed after each completed trans-
action.

Differential files are used in a system,
described by Titman [TITM74], for both
efficiency and reliability. The way in which
ordinary files are kept makes insertions or
deletions very expensive. In Titman's sys-
tem the files are binary relations which are
stored in highly compressed fixed-length
blocks. Elements are identified by a block
number and the sequence number of the
element in the block. An insertion or dele-
tion requires the complete reorganization
of the file giving the elements new identi-
fiers. For reasons of efficiency, an "add set"
and a "delete set" of elements are kept for
each file. For reasons of reliability, a
"change set" is also kept for each file; it is
used to register the changed records. The
add set, delete set, and change set together
form the implementation of a differential
file. The main files are kept on a separate
device which is never written on except
during reorganization. These files can be
duplicated on tapes for recovery. Check-
pointing is carried out by saving the add,
delete, and change sets.

BACKUP AND CURRENT VERSIONS

Backup versions of files or databases can
be kept in order to make possible the res-
toration of the files to a previous state.

For example, many file-editors produce
a complete new version of a file while a user
is editing a file. The original file remains
unchanged during the edit-session. The
new version is a complete new copy; it is
not achieved, for example, by using a dif-
ferential file. If a user notices a blunder

Computing Surveys, Vol 10, No 2, June 1978

Recovery Techniques for Database Systems • 183

during the edit session, the original copy of
the file will not be lost.

Incremental dumping (of current ver-
sions) can be used as a utility to maintain
a backup version of a filing system or da-
tabase. Copies of altered files can be used
to update a backup version of the whole
system or database. This is done in the
Cambridge filing system [FRAs69], where
two processes are used: one makes incre-
mental dumps and the other creates ver-
sions of the system.

Similarly, complete copies of the data-
base can be made regularly in order to
make possible the restoration of the data-
base to an earlier state. For example, the
original version of MULTICS [DALE65]
prepared a weekly dump; it included all
files which had been used within the last
several weeks plus all the system files.

An optimized version of the
backup/current versions has been designed
for System R [LoRI77] and is used in other
systems for segments (synonymous to the
notion of files). Figure 3 illustrates this
mechanism. (Figure 3 is not complete; for
example, the MASTER is duplicated. How-
ever, sufficient details are shown to illus-
trate the mechanism discussed here.) For
each segment a page table is used to locate
the data pages. There are two copies of
each page table, which are identical after a
SAVE.SEGMENT. If a page of a segment
is altered for the first time after a
SAVE.SEGMENT or OPEN.SEGMENT
operation, its new value is put in a newly
allocated page, and the current version of
the page table is updated to point to the
new page.

For example, in Figure 3, page 13 in seg-
ment Sp is updated. The new value of the
page is therefore, in this case, placed in
page 5, and the current page table is made
to point to page 5 instead of page 13. The
backup version remains unaltered. When a
SAVE.SEGMENT is issued the buffers are
forced to disk, modified pages are released
(i.e. the old versions), and the current ver-
sion is copied into the backup version. So,
for example in Figure 3, pages 13, 6, and 21
will be released.

This releasing of pages causes the bit
map used to indicate the free pages to be
updated. In Figure 3, the bit map will have

to be updated so that bits 13, 6, and 21 are
reset, and 5, 3 and 19, are set. Two copies
of the bit map are maintained. A MASTER
table points to the current map. The cur-
rent bit map always reflects a checkpoint
state of the system (i.e., all of the pages
pointed to by the backup versions of the
page tables). The SAVE.SEGMENT oper-
ations can be done at random moments in
time.

This current and backup versions recov-
ery technique is used in System R for re-
covery from system failures to restore a
checkpoint state. The log (audit trail) is
then used to redo transactions completed
before the failure. In addition the log is
used to back out transactions which were
incomplete at the checkpoint time. The log
is also used in System R to back out trans-
actions when a transaction fails or a dead-
lock occurs.

The backup/current version technique
described above, is not designed in System
R for recovery after a failure where second-
ary storage is destroyed; incremental dump-
ing is used for this purpose instead. After
the SAVE.SEGMENT operation the MAS-
TER table is made to point to the up-to-
date bit map. This scheme provides the
possibility of restoring a segment to its last
consistent state {held in the backup ver-
sion} and of restoring consistency after a
system failure. The operations of unfin-
ished transactions, performed before the
failure will be lost; these transactions will
have to be restarted.

Physically separate backup and current
versions of the page table provide backup
and current versions of the segment under
this scheme. The logically different versions
of a segment overlap (physically) in their
implementation where they are the same.

MULTIPLE COPIES

The technique of multiple copies includes
two techniques:

• Keeping an odd number of copies of
the data. If a majority of the copies
have the same value, then that value is
taken as the correct one. This tech-
nique is then called majority voting.

• Holding two copies with flags to indi-
cate "update-in-progress." An incon-

Computing Surveys, Vol 10, No 2, June 1978

184 • J. S. M. Verhofs tad

sistent copy (or suspicious copy) is al-
ways recognizably inconsistent, be-
cause of the flags used; if the system
crashes during update the flag will still
be set after the crash.

Except during update, the multiple cop-
ies must always have the same value. If the
different copies are updated by the same
processor then an "update-in-progress" flag
(or "damage flag" [CURT77]), used if there
are only two copies, provides crash resist-
ance. A consistent copy can always be re-
trieved after a system restart; this copy will
have either the value it had before the
update in progress during the crash, or the
new value. The inconsistent copy can al-
ways be recognized as such and discarded.
Majority voting may also be used to detect
incorrectly performed operations; this is es-
pecially useful if different processors update
the different copies. Faulty processors can
then be detected and ignored or discon-
nected.

The important difference between the
multiple-copies technique and other tech-
niques, such as backup/current version or
careful replacement, is that with the mul-
tiple-copies technique the different copies
always have the same value except during
update of the actual physical data struc-
ture. Thus, if the two copies hold consistent
values they must be equal. Backup or in-
cremental dumping schemes could also be
used to keep different copies that hold the
same value except during a job or transac-
tion. In these cases there is always a pri-
mary copy and a backup copy, which may
hold different, but consistent, values from
the database point of view. The technique
of copying onto tape at the completion of
each updating, is different from the multi-
ple copies technique. The multiple copies
must exist all the time; physically, they do
not overlap, and they have equal status.
Schemes based on different backup or ar-
chival versions, are definitely not examples
of the multiple copies technique.

Majority voting data has been used ex-
tensively for space flight applications, such
as in the space shuttle system where four
computers are configured to receive the
same input data and calculate the same
outputs [SKLA76].

The technique of two copies with flags is
used in recovery for segments in System R
[LORI77]. A MASTER table is used to in-
dicate which segments are open or closed
and which bit map (two copies are held) is
up-to-date (see Figure 3). Two copies of the
MASTER table, both containing the same
information, are kept to ensure that, if the
system crashes while the MASTER table is
being updated, only one copy will be left
behind in an inconsistent state; the other
copy has either the new state or the state
the table was in before the update started.
(Only one copy of the MASTER table is
drawn in Figure 3, but two copies are used
as described above.) The copy that is in an
inconsistent state can always be identified.

Similarly, two copies of the MASTER
directory in the filing system of GEORGE
3 are maintained [NEWE72], and two bits
to make possible the distinction between a
valid and invalid copy after a crash during
update.

System HIVE [TAYL76] maintains two
read-write versions for every file. This pro-
vides one of the characteristics oZ a cycle
(see the section on salvation programs):
The local effects can be undone as long as
the cycle has not yet finished. During a
cycle one of the two versions is updated. At
the end of the cycle this version is copied
onto the other version. The system knows
which of the two versions is the one up-
dated during a cycle. Crash resistance is
therefore provided for individual files.
Apart from this, a checksum is maintained
for each version. This, generally, enables
partially updated or corrupted files to be
detected. In general two copies and two
flags (bits) are sufficient to provide crash
resistence. The flag indicates whether a
copy is suspicious or not. If the two copies
are updated immediately after each other,
as in System R, then a copy is likely to be
inconsistent if its flag is set. In system
HIVE, however, the two copies are kept on
separate storage devices, so the checksum
allows detection of incorrectly performed
operations. Although selective redundancy
is not uncommon, system HIVE is one of
the few existing systems in which more
than one complete copy for every safeguard
file is maintained to provide crash resist-

Computing Surveys, Vol 10, No 2, June 1978

Recovery Techniques for Database Systems • 185

ance. One copy is updated during a cycle,
and the second copy is updated in pages
which correspond to the changed pages of
the first copy.

CAREFUL REPLACEMENT

The objective of careful replacement is to
avoid updating data structures "in place."
{Some bit or pointer must always be up-
dated "in place" [NEWE72, VERH77a]; how-
ever, this feature will not be elaborated
further in describing the careful replace-
ment technique.) The update is performed
on a copy of a component (record, page,
disk-block), which replaces the original
only if the update is successful; and the
copy is kept until after the replacement is
made successfully. The same is done for
objects in the data structure which point to
those objects. There are two instances of
the data structure only during update;
otherwise there is just one copy, which
contains the current value.

This technique differs from differential
files, which accumulate update requests for
unaltered originals. However, careful re-
placement could be used to merge the main
file with the differential file. With the care-
ful replacement technique the two "virtual"
copies are held only during an update (or
perhaps within a recovery scope specified
by the programmer [VERH77a]); this makes
the update or sequences of updates as safe
as possible by reducing the chance of being
left with an inconsistent copy or mutually
inconsistent files. The two instances of the
data structure are referred to as two "vir-
tual copies" because they overlap in iden-
tical objects. There are two different de-
scriptors to access the two different in-
stances.

This technique is fully explained by Gam-
ble [GAMB73] for a filing system. Files con-
sist of data pages pointed to by a tree of
directory pages. A master directory points
to each top directory page of the files. If a
file is updated using careful replacement, it
can always be restored to its state prior to
update.

This approach avoids the three disadvan-
tages of differential files [LORI77] men-
tioned above. However, careful replace-

ment has its own disadvantages:
• The file or data structure must be

tractable. For example, implementing
a file as a hst of linked pages could be
prohibitively expensive. This expense
arises because replacing a page re-
quires updating the link in the page
pointing to it. Careful replacement re-
quires updating that link in a copy of
the page. Thus, the change in one page
can propagate replacements through
the whole list. The constraints and re-
quirements that careful replacement
sets for the data structures are fully
described elsewhere [VERH77a,
VERH77b].

• Overhead costs are incurred in disk
accesses. In GEORGE 3, where this
technique is used for fries, but not for
the much more heavily used MAS-
TER-directory, the measured over-
head reported by NeweU is surprisingly
low. The method is also used in the
MU5 system [GAMB73]. So the over-
head can be a disadvantage which does
not outweigh the advantages.

Files in the system described by Lampson
and Sturgis [LAMP76] are updated using
careful replacement during the processing
of the intention lists. System R uses the
basic idea to update segments.

The CMIC system also uses this tech-
nique [GIoR76]. The storage structure used
is similar to B-trees [KNUT73]. If an inser-
tion is made in a full track, two new tracks
are obtained and the contents of the full
track plus the new entry are put in these
two new tracks (see Figure 6). The same is
done for the index table which contains the
pointers to the data tracks.

This method also uses the leaf-first rule,
which states that copying of information to
slower memory {e.g., from main storage to
drum, or from drum to disk) is done in such
a way that no descriptor or pointer can ever
reference a block at a faster level of the
device hierarchy. This ensures that the
(sub-)structure on mass storage is always
valid, for it will always be a valid and con-
sistent tree. Every pointer or descriptor on
mass storage always points to valid struc-
tures on that mass storage: no parts of that
data structure will still be on faster mem-

Computing Surveys, Vol 10, No 2, June 1978

186 • J. S. M. Verhofstad

A0

A1

A2

A3

A4

A5

T1

index
free

T1 space

stack
T2

T5
T9
T7
TI3

T2

B0

B1

B2

B3

B4

T1

A0

A1

A2

A3

A4

A5

index

T1

T2

T5 T9

A0 A3

A1 A4

A2 ! A5
i

A6 i

I

free space
stack

T7
T13

T2

B0

B1

B2

B3

B4

B5

. M .

T1

A0

A1

A2

A4 i
i A5

index

T5

T2

-'-~T5 NT9

A0 A3

A1 A4

A2 A5

A6

free
space
stack

T7
TI3

T2

B0

B1

B2

B3

B4

;T5

A0

index
free space

T5 stack

T9 T1

T7
T2 TI3

~9 4, T2

A3 B0

A4 B1

A5 B2

A6 B3

B4

FIGURE 6.

The free space stack contalns the addresses of the
free records.

T h e m s e ~ l o n of a n e n t r y A5 m a ~ H t r a c k m a s t o r a g e s t r u c t u r e a s u s e d i n CMIC, in ~ u r s t e p s

Computing Surveys, Vol 10, No 2, June 1978

Recovery Techniques for Database Systems • 187

ory. It also ensures that no data on mass
storage is ever removed from the structure
during update. Instead, replacement-is used
by using new tracks when necessary. Data
structures, pointers, and descriptors in the
tree structure on mass storage are always

present; they are not removed and put back
during updating.

The careful replacement technique is of-
ten used in filing systems using a hierarchy
of devices by employing the leaf-first rule
and the root-segment rule (see Figure 7).

3 ¸

1

3 9

1

1

2
. H

1

DISK

DRUM

1

3 ~9

3

1

26

1

15 21

%
CORE

1 1 1

U

Three possible subsequent sltuatlons.
Where: Vl = a value of a data page

FIGURE 7. The care~ l replacement technique in a hierarchy of devices.

Computing Surveys, Vol 10, No 2, June 1978

188 • J . S. M. Verhofs tad

The root-segment rule states that if a data
page is on a particular level of storage in
the hierarchy, every directory page be-
tween it and the root of the file is on that
level or a faster level (the root is the top
directory in the tree of directory pages).
These two rules mean that careful replace-
ment is used at every level in the hierarchy.
Were the contents of the main memory to
be lost after a crash, the drum and disk
would still have two copies of the file: the
disk copy contains an old value, the drum
copy contains a newer value of the file
{some pages of the file are on drum and
others on disk).

Figure 7 shows how updates on a main-
memory version of a file are subsequently
made to the copies of that file held on drum
and disk using these two rules. The example
in Figure 7 shows the pages of a file as held
on disk, drum, and in core during process-
ing, at three different subsequent moments
in time: time 1, 2, and 3. At time 1, the copy
on disk shows that the change made to page
8 and the addition of page 26 into directory
page 3 have not yet been consolidated in
the disk copy of the file. The copy in core
shows that page 8 has been updated again,
and that the update has not yet been con-
solidated on the drum. Similarly, at time 2
the copies on disk, drum, and core show
that the update of page 8 and the addition
of page 26, consolidated on drum at time 1,
are now consolidated on disk. The update
of page 8 in core at time 1 is now consoli-
dated on drum. In the meantime other up-
dates and additions have been made to the
file in core. Finally, the copies at time 3
show yet more updates, and show how they
are consolidated.

Although pages are updated "in place,"
this technique can be classified as being a
careful replacement technique because up-
dates are made in fast memory, and the
replacement takes place on slow memory
containing the files. It is a careful replace-
ment technique because every valid tree
structure is consistent. If the contents of
both main memory and drum are lost, there
will remain a consistent copy on disk. If the
contents of main memory are lost, the up-
dates which were started on the main mem-

ory copy but not consolidated in the drum
copy yet, will be lost. If the contents of the
drum are also lost, the updates which were
consolidated in the drum copy, but not yet
in the disk copy, will be lost as well.

A system using the leaf-first and root-
segment rules has been described by
Schwartz [SCHw73]. Files are trees of pages
which are either index pages (i.e., directory
pages) or data pages (as in Figure 7). A file
descriptor is the root of the index table; a
directory file contains the descriptors. In
that system, and in CMIC too, the directory
file is updated "in place." If absolute crash
resistance were to be provided in this sys-
tem, the multiple copies technique could be
used for the directory, as is done in
GEORGE 3 [NEWE72].

If the recovery is to be provided for trans-
actions consisting of more than one update,
replaced pages can be updated "in place."
This technique has been used at Newcastle
[VERH77a] to provide recovery for files
within user defined scopes. Scopes can be
nested, as with "spheres of control"
[BJOR72]. These scopes are termed "recov-
ery blocks" [RAND75]. A recovery block
consists of an acceptance test and a set of
alternative algorithms. The first algorithm
is executed first, followed by the evaluation
of the acceptance test. If an error occurs
during the execution of an alternative, or
the acceptance test is not done successfully
{either it fails or it is never done), all the
operations performed so far are undone,
and the next alternative is invoked, if pos-
sible. (A power failure still causes all the
operations to be undone [VERH77a] how-
ever.)

The same is now done for the second
alternative. If all the alternatives of a re-
covery block are exhausted, an error is gen-
erated in the outer recovery block, or the
program fails ff there is no outer recovery
block. A copy of a file is maintained for
every level of nesting in which the file has
been operated upon; these copies contain
identical nonupdated pages. The current
value of the file is in the latest copy. Recov-
ery means restoring the copy as it was
before the current recovery block was en-
tered. On exiting a recovery block success-

Cornputmg Surveys, Vol. 10, No 2, June 1978

Recovery Techniques for Database Systems

fully, the updated part is substituted in the
original that existed just before the recov-
ery block was entered.

DIRECTIONS FOR FUTURE RESEARCH AND
RELATED WORK

Recovery among interacting processes has
not been dealt with explicitly in this survey.
These problems can be significant. For ex-
ample, the designers of System R encoun-
tered major difficulties when trying to use
the shadow mechanism (as in the
backup/current version technique de-
scribed previously) for recovery in a multi-
user environment. The scheme is now used
only for system recovery after a total sys-
tem failure. Some of the problems of pro-
viding recovery for interacting processes
have been described elsewhere [RAND75,
GIOR76, ASTR76, RAND78, CURT77]. This
topic is a subject of ongoing research. A
major difficulty is that processes being
backed out past interactions performed
may require other processes to be backed
out, creating a "domino" effect [RAND75].

The problems with the domino effect
could be explained by generalizing Russell's
diagrams [Russ77] for producer-consumer
systems. Vertical lines, in such diagrams
are then used to denote the progress made
by processes in time. An arrow from one
process A to another process B occurs in
such diagrams if A last updated data that
is read by B. (See Figure 8.) This arrow
now denotes that effectively a message was
sent by A when it updated the data and
was received by B when it read that data.
Each time the data is read a message has
been sent and received.

As shown by Randell [RAND75], it is not
known which processes to checkpoint at
which moments in time unless this diagram
is known in advance. Russell [Russ77]
makes use of that knowledge for his pro-
ducer and consumer systems. The diagram
is not known in advance in a database sys-
tem, since it is not known which operations
(programs), sharing the same database, will
be performed in parallel. Even if it were
possible to predict which programs will run
concurrently, it might not be possible to
predict which interactions will occur.

• 1 8 9

Process A Process B Process C

Time

1

read
x2

read
x2

read x l

J
update x2

FIGURE 8. A generalization of Russell's diagrams
[Russ77].

It seems that in our diagram (Figure 8) a
process could be checkpointed each time it
has updated some global data, and before
some other process can read that data. This
could be done using techniques similar to
cacheing as discussed by Randell
[RAND75]. However, the system still has to
keep track of the interactions that have
taken place (i.e., see Figure 8) to determine
which other processes to back out to which
specific points in time.

The cacheing technique could be used to
reset a process; a recovery technique can be
used to back out the database; and the
same or some "companion" technique could
be used for each process "to put messages
back." This latter technique would have to
provide the facility to reread the same value
without restoring the shared data, since
that may have undesired effects on other
processes.

The main problems are to keep track of
the diagram, and given the diagram, to
decide upon which processes to back out to
which points in the event of a process fail-
ure. These problems are at present being
addressed at the University of Newcastle
upon Tyne.

There are two approaches to the problem
at present:

• Prevent the interactions. Preventing
interactions is feasible only when the

Computing Surveys, Vol 10, No 2, June 1978

190 • J . S . M . Verhofs tad

interactions are not required. In this
case processes can be executed one at
a time, in some sequence which can
be implemented by explicit locking
[GRAY76] o r implicit locking [BANA
77]. The explicit locking schemes are
widely used in database systems, most
of which abandoned implicit locking a
few years ago.

A user or a program can request
various modes of access to an object;
these modes include exclusive or
shared access. Some access modes are
incompatible: if one user has access to
an object in a certain mode, then an-
other user is refused access to the same
object in an incompatible mode. For
example, multiple reads of a file are
allowed, but writing precludes other
file operations. Such locking schemes
prevent unwanted interactions, while
allowing shared access when it will pro-
duce no interference among programs.

Implicit locking occurs in monitors
[HOAR74], which are used to imple-
ment resource allocation algorithms.
Programs seeking to acquire or release
resources invoke monitor procedure
calls. The monitor locking scheme en-
sures that only one process at a time
will update an object; hence uniprocess
recovery schemes are possible. Other
processes are prevented from updating
that object until the process which is
updating that object concludes a unit
of recovery, such as a transaction
[GRAY77] or a recovery block
[BANA77]. However, locking by using
monitors (or "serially reusable pro-
grams" as they are called in OS/360)
has been shown to be disastrous in
database systems, for high concur-
rency.

A similar way in which the restric-
tions can be enforced is by using a
capability architecture [GRAY70,
DENN76] to implement a high degree
of error confinement [LIND76]. Capa-
bilities permit sharing, but will, when
used wisely, limit the number of pro-
cesses to be backed out. A capability is
a protected key or password for using
storage objects and procedures. Capa-

bilities can, therefore, in fact be a
means of implementing locking. The
use of capabilities can prevent un-
wanted interactions like locking
schemes, and therefore limit the risk
that errors will lead to much damage
before being detected.

• Synchron i ze theprocesses wi th respect
to recovery. To avoid arbitrary backing
out among processes that must inter-
act, severe constraints are needed.
RandeU suggests a "conversation"
[RAND75] which is a recovery block
with locks that make all processes en-
ter and exit together. Processes in a
conversation may not interact with
those outside. In case of failure, proc-
esses need to be backed out only to the
beginning of their conversation. "Re-
covery lines" are needed to back out all
the processes [RAND78]. A recovery
line is a set of consistent checkpoints.

These approaches are designed to over-
come the domino effect of backing out in-
teracting processes. At worst, all the proc-
esses that have interacted with a failing
process will have to be backed out to their
initial states. The two approaches above
force the creation of recovery points (i.e.,
checkpoints) in such a way that recovery
lines are formed to minimize backing out in
case a failure occurs.

The first approach is well understood,
and many systems use successful schemes
based on it. One efficient way to implement
the first approach is used in IMS. The
system queues all modified records, be-
tween checkpoints; this is similar to con-
structing an intention list [LAMP76]. Thus,
if a program updates records, other pro-
grams are prevented from accessing these
updated records until that program termi-
nates or issues a checkpoint. The program
can be backed out to its last checkpoint,
without undoing effects to other programs,
before it terminates.

The second approach, however, is not yet
well understood. If the first approach has
not been used, it is generally, in existing
systems [CURT77], up to the operator or
data administrator to analyze the situation
and take appropriate action. Whenever the

Computing Surveys, Vo| 10, No 2, June 1978

Recovery Techniques for Database Systems

first solution is not possible, many systems
accept the possibility of the domino effect.
These systems must fall back on check-
pointing the total system at regular inter-
vals [GIOR76], or synchronizing the check-
points of the various programs so that roll-
back can be performed to a common point
in time [CURT77]. This solution may be too
cumbersome to be acceptable in many dis-
tributed systems.

This is one of the major problems of
integrity in distributed database systems.
Also, the implementation of the first ap-
proach (i.e., prevent the interactions) in
distributed systems, such as systems using
intelligent terminals for example, is not
trivial. Gray [GRAY77] describes a "recov-
ery protocol" which makes recovery possi-
ble by implementing two important re-
quirements: the decision to commit the op-
erations performed during the transaction
on data at different nodes in the distributed
data base system {i.e., the successful com-
pletion of the transaction), has been cen-
tralized in a single place (i.e., the decision
is taken by one processor).

This survey has discussed recovery by
state restoration. Whenever a failure oc-
curs, a state which is believed to be error-
free is restored before attempting to con-
tinue further operation. Other recovery
techniques are still under investigation, for
example:

• Error diagnosis and repair. Instead of
restoring a state when an error is de-
tected, an attempt could be made to
identify and repair the cause of the
error [RAND78]. This may be very dif-
ficult, not only because different errors
may be caused by one fault, but differ-
ent faults may cause the same error.

• Compensation. Rather than undoing
operations by state restoration, it could
be attempted to nullify the impacts of
these operations by compensating for
their effects. This can be achieved by
providing supplementary corrective in-
formation [DAvI72, RAND77]. For ex-
ample, if a database had been updated
to indicate that an employee has been
given a $1000 wage increase, instead of
an intended $100 increase, then a wage

191

decrease of $900 could be given as com-
pensation. This could be cheaper than
backing out the transaction on the da-
tabase.

Little has been said here about the costs
of recovery itself. A recovery procedure
may put the data structures back into con-
sistent states; or it may restore the data to
a previously existing state. There are few
papers which have examined the most com-
mon failures or the degrees of recovery
suitable for different environments. This
survey indicates guidelines rather than de-
tailed analyses of some degrees of recovery.

The cost of the error detection scheme
must also be taken into account. There
have been few papers reporting systematic
approaches to software error detection.
Yet, error detection is absolutely essential
to make recovery techniques useful. Many
system structures, system concepts, and
language concepts have been developed to
make the inclusion of tests for error detec-
tion easier. They provide a framework
which allows the user or programmer to
embed such tests in a structured manner.
Examples of this are capability systems
[DENN76], recovery blocks [RAND75], and
security and access control as provided in
recently designed languages. However,
these concepts only provide a framework in
which to embed tests, rather than the ac-
tual error detection mechanisms them-
selves. Error detection schemes that em-
ploy tests could be designed using two ap-
proaches: 1) Test if algorithms perform
completely according to their specifica-
tions; and 2) Distinguish certain types of
errors, and test for their presence (or ab-
sence}.

Testing the validity of all of the input
data and parameters of procedures is an
example of a systematic error detection
scheme based on the second approach.
However, few systematic ways in which
tests can be constructed, using either
approach, are reported in literature
[RAND78]; little is known about the costs
of error detection schemes. Error detection
in system software is generally done in an
ad hoc fashion using the second approach.
Some initial work on the construction of
(run time) tests, using the first approach,

Computing Surveys, Vol 10, No 2, June 1978

192 • J. S. M. Verhofs tad

has been described elsewhere [VERH77b].
The techniques described in this survey

provide recovery for files based on second-
ary storage. Verhofstad has some prelimi-
nary extensions to data types more complex
than files, and recovery procedures for dif-
ferent levels of a system [VERH77b]. Ran-
dell has discussed "nested recovery" using
recovery blocks [RAND75]. The relation to
careful replacement has been discussed by
Verhofstad [VERH77b]. Beyond such pre-
liminary works, little is published about the
systematic recovery of program or data ob-
jects.

SUMMARY AND CONCLUSIONS

This paper has described many of the tech-
niques used to implement backing out,
crash recovery, crash resistance, and con-
sistency. These techniques can be used in
different environments, for different pur-
poses; they can complement each other.
Figure 9 is a cross-reference table; it shows
which techniques discussed in this survey
are used in which particular systems. This
table may be incomplete for the systems it
covers (e.g., System R may have some sort
of salvation program); however it summa-
rizes the most important features of the
systems as reported in the literature.

It appears that for filing systems, where
short term losses are not considered serious,
the combination of incremental dumping, a
complete backup version of the system, and
a salvation program suffices for a high de-
gree of reliability. This approach has been
successful in MULTICS, the Cambridge
system, and EMAS. A salvation program

~alvatlofl
Pro-
~ a m

may be needed to be sure data is consistent
after a crash; its use may cause some data
to be lost.

This combination can be improved by an
audit trail, a safeguard against losing up-
dates; this is done in IMS. The recovery
facilities in IMS are extensive but not sys-
tematic; there is neither a general approach
nor a dominant technique, as in the Cam-
bridge system or VADIS. IMS provides an
enormous range of facilities; 50% of the
code was said to be for recovery purposes
[INFO75], although a more recent source
stated that this figure was around 17% in
1978 (J.N. Gray of IBM Research Labora-
tory, San Jose, Calif., supplied this infor-
mation in a private communication in Feb-
ruary 1978). However, the application pro-
grammer, it seems, needs to build his own
mechanisms and utilities, certainly if high
integrity is required. The programmer also
has to make explicit checkpoints if they are
required.

The loss of any completed update can
also be avoided by using careful replace-
ment or multiple copies as in GEORGE 3,
HIVE, CMIC and System R. It may also
avoid the need for a salvation program (as
in GEORGE 3). Also the differential files
technique is very powerful and can be used
to provide recovery facilities and crash re-
covery.

Audit trail with backup, or incremental
dumping with backup, or audit trail with
incremental dumping and backup, or mul-
tiple copies, are all techniques for recovery
from more serious failures, which other re-
covery techniques cannot handle.

It is difficult to make a comparison be-

System R GEORGE
[AsTn76] IMS 3 HIVE MULTICS Cambrufge EMAS CMIC VADIS Newcastle
[Loaff7] [IBM] [NEwE72] [TAr1 76] [DALE65] [FR^~69] [EM^~74] [GIoR76] [RAPP75] [VERH77a]

| n c r e m e n t a l * * *

l~umpmg
Audit Trail

Differential
Fdes

Backup * * *
Current

Multiple * *
Copies

Careful Re-
placement

FIGURE 9. A cross-reference table of systems and recovery techniques.

Computing Surveys, Vol 10, No 2, June 1978

Recovery Techniques for Database Systems 193

tween costs and overheads for the various
techniques. However, some general state-
ments can be made:

• If failures do not occur often, the dif-
ferential file and careful replacement
techniques give extra overhead. The
reason is that other recovery tech-
niques, such as incremental dumping
or backup/current version or a salva-
tion program, are usually needed any-
way for failures with which these two
techniques cannot contend. However,
the two techniques do cope with the
particular failures in a much better
way: the database is crash resistant,
maintaining the correct state; it is more
efficient because no separate tapes
need to be mounted and processed.

• The multiple copies technique {e.g., in
HIVE [TAYL76]) has very high over-
head. Nonetheless, it meets HIVE's ob-
jective of very high integrity.

• The overhead with audit trails may be
high, because every operation on the
database may also necessitate an audit
trail entry. This technique may be jus-
tiffed for recovery only if the audit trail
is already required for certifying integ-
rity or if it is absolutely required that
almost all crashes are not catastrophic.

• The incremental dumping and
backup/current version techniques are
the best for recovery from highly dam-
aging failures such as a head crash on
disk. These techniques may not restore
the correct state, but only a consistent
state. The overhead of these tech-
niques is tolerable, because their
checkpoints are not too frequent.

• The cost of a salvation program com-
pletely depends on the number of
crashes; overhead is accumulated only
when the program is used.

The careful replacement technique is
used increasingly in multiuser or multima-
chine environments [NEWE72, GAMB73,
LAMP76, GIOR76, LORI77]. It is implied by
the root-segment rule and leaf-first rule in
systems using a hierarchy of devices
[SCHW73]. The combination of careful re-
placement and multiple copies is also im-
portant [GIoR76, ASTR76, VERH77a]. The
differential file technique [RAPP75,

SEVE76] has many very nice features which
have recently received much attention.

The attention that has been paid to these
techniques during the last few years makes
it reasonable to assume that they will be
used more widely in the future. The tech-
niques ensure that data is unlikely to be
lost through failures. The cost of data in-
tegrity is lower, and its value higher, than
a number of years ago. Data integrity is
becoming a more important issue than ef-
ficiency.

ACKNOWLEDGMENTS

I would like to thank Brian RandeU for insisting that
I document the results of my search for information
about current techniques for recovery in emsting sys*
tems, and for his many very useful suggestions and
comments.
I would also like to thank Stephen Todd, John Owlett
(both of IBM, Peterlee, England), Ellis Cohen, Tom
Anderson, Pete Lee and Phil Treleaven for reading
earlier versions of this paper and giving me useful
comments and suggestions. I appreciate Jim Gray's
careful review of the manuscript and current Infor-
mation on System R.
My thanks are also due to the referees and to Peter J.
Denning, the Editor-in-Chief of COMPUTING SUR-
VEYS, for their useful comments and suggestions.

[ANDE75]

[ASTR76]

[BANA77]

[BJOR72]

[BJOR75]

[CURT77]

[DALE65]

[DAVI72]

REFERENCES

ANDERSON, T. Provably safe pro-
grams, Tech. Rep. 70, Computing Lab-
oratory, Univ. Newcastle upon Tyne,
UK, Feb. 1975.
ASTRAHAN, M. M., et al. "System R:
Relational approach to data base man-
agement," in ACM Trans. Data Base
Syst. 1, 2 (June 1976), 97-137.
BANATRE, Z. P.; AND SHR1VASTAVA, S.
K. Rehable resource allocation be-
tween unrehable processes, Tech. Rep.
99, Computing Laboratory, Univ. New-
castle upon Tyne, UK, April 1977.
BJORK, L. A.; AND DAVIES, C .T . The
semantws of the presentatwn and recov-
ery of integrity ~n a data base system,
IBM Tech. Rep. TR 02.540, Dec. 1972.
BJORK, L .A . "Generahsed audit trail
requirements and concepts for data base
applications," I B M Syst J. 14, 3 (1975),
229-245.
CURTICE, R.M. "Integrity in data base
systems," Datamation 23, 5 (May 1977),
64-68.
DALEY, D. C.; AND NEUMANN, P.G. "A
general purpose file system for secondary
storage," in 1965 A F I P S Fall Jt. Com-
puter Conf., Vol. 27, Part 1, Spartan
Books, Washington, D.C., pp. 213-229.
DAVIES, C. T. A recovery~integrity ar-

Computing Surveys, Vol. 10, No 2, June 1978

1 9 4 •

[DENN76]

[EMAS74]

[FRAs69]

[GAMB73]

[GmR76]

[GRAY70]

[GRAY76]

[GRAY77]

[HOAR74]

[IBM]

[INFo75]

[KNUT73]

[LAMP76]

[LIND76]

fLock68]

J . S . M . V e r h o f s t a d

chitecture for a data system, IBM Tech.
Rep. TR 02.528, May 1972.
DENNING, P. J. "Fault-tolerant oper-
ating systems," Comput. Surv. 8, 4 (Dec.
1976), 359-389.
REES, D. J. The E M A S directory,
(EMAS report 2), MILLARD, G. E ; REES,
D. J.; AND WHITFIELD, H. The stan-
dard E M A S subsystem, (EMAS report
3); SHELNESS, N. A.; STEPHENS P. D.;
AND WHITFIELD, H. The Edinburgh
multi-access system scheduhng and al-
locatmn procedures ~n the ressdent su-
pervssor, (EMAS report 4); Dept. Com-
puter Science, Univ. Edinburgh, Edin-
burgh, UK, April 1974.
FRASER, A. G. "Integrity of a mass
storage filing system," Comput. J. 12, 1
(Feb. 1969), 1-5.
GAMBLE, J S. "A file storage system
for a mult2-machme enwronment," PhD
Thesis, Victorm Univ., Manchester, UK,
Oct. 1973.
GIORDANO, N. J.; AND SCHWARTZ, M.
S. "Data base recovery at CMIC," m
Proc. 1976 SIGMOD Int. Conf. on Man-
agement o f Data, ACM, New York, pp.
33-42.
GRAY, J. N. "Locking," in Record of
the Project M A C Conf. on Concurrent
Systems and Parallel Computatmn,
1970, Jack Dennis (Ed.), ACM, New
York, pp. 97-112.
GRAY, J. N.; LORIE, R. A.; PUTZOLU, G.
R.; AND TRAIGER, J.L. "Granularity of
locks and degrees of consistency m a
shared data base," m Modelling sn data
base management systems, G. M.
Nijssen (Ed.), Elsevier North-Holland,
Inc., New York, 1976, pp. 365-394
GRAY, J .N. "Notes on data base op-
erating systems," in Advanced course on
operating systems, Technical Univ. Mu-
nich, 1977, Elsevier North-Holland, Inc.,
New York.
HOARE, C. A.R. "Monitors: an oper-
ating system strncturmg concept," Com-
mun. A C M 17, 10 (Oct 1974), 549-557.
IBM Information Management System
reference manuals. I MS / V S , Utd~t~es
reference manual, SH20-9029; I M S / VS,
Operators reference manual,
SH20-9028; IM S / V S , System program-
mer reference manual, SH20-9027, IBM,
White Plains, N.Y.
Infotech state o f the art report: data
base systems, Infotech Informatmn Ltd.,
Maidenhead, UK, 1975.
KNUTH, D.E. The art o f computer pro-
grammmg, Vol. 3" sortsng and search-
rag, Addison-Wesley Publ. Co., Reading,
Mass., 1973.
LAMPSON, B.; AND STURGIS, H. Crash
recovery sn a dsstr$buted data storage
system, Computer Science Laboratory,
Xerox Palo Alto Research Center, Palo
Alto, Cahf, 1976
LINDEN, T. A. "Operating system
structures to support security and relia-
ble software," Comput. Surv 8, 4 (Dec.
1976), 4O9-445
LOCKEMANN, P. C.; AND KNUTSEN, W
D. "Recovery of disk contents after

[LORI77]

[MART76]

[MASC71]

[MASC73]

[MELL77]

[NEWE72]

[RANDT0]

[RAND75]

[RAPP75]

[RAND78]

[Russ77]

[ScHw73]

[SEVE76]

[SKLA76]

[SMIT72]

[STER74]

[TAYL76]

system failure," Commun. A C M 11, 8
(Aug. 1968), 542.
LORIE, R. A. "Physmal integmty in a
large segmented database," A C M Trans
Database Syst. 2, 1 (March 1977),
91-104
MARTIN, J Prsnc~ples of data-base
management, Prentice-Hall, Inc., Engle-
wood Cliffs, N J., 1976, p. 4.
MASCALL, A. J Studies of the rehabd-
sty and performance of computsng sys-
tems at Barclays Bank, Internal memo
SRM/10, Computing Laboratory, Univ.
Newcastle upon Tyne, UK, 1971
MASCALL, A. J. Checkpoint, backup
and restart ~n a "rehable'" system, In-
ternal memo SRM/37, Computing Lab-
oratory, Umv. Newcastle upon Tyne,
UK, April 1973.
MELLIAR-SMITH, P. M.; AND RANDELL,
B. "Software rehability: the role of pro-
grammed exception handhng," m Proc.
A C M Conf. on Language Design for Re-
hable Software, 1977, ACM, New York,
pp. 95-100.
NEWELL, G.B. Security and resd~ence
sn large scale operating systems, 1900
Series Operating Systems Division, In-
ternational Computers Ltd, London,
1972.
RANDELL, B. Vssst to BOAC, Internal
memo SRM/5, Computing Laboratory,
Univ. Newcastle upon Tyne, UK, 1970
RANDELL, B. "System structure for
software fault tolerance," I E E E Trans.
Softw. Eng. SEol, 2 (June 1975),
220-232.
RAPPAPORT, R.L. "File structure de-
sign to facilitate on-line instantaneous
updating," m Proc. 1975 A C M SIGMOD
Conf., ACM, New York, pp. 1-14.
RANDELL, B., LEE, P. A;AND TRE-
LEAVEN, P. C. "Reliability msues m
computing system demgn," see pp
123-165 this issue Comput Surv
RUSSELL, D. L. "Process backup m
producer-consumer systems," m Proc.
Syrup. on Operating Systems Prtnc~ples
1977; Operating Syst. Rev. 11, 5 (1977),
151-157.
SCHWARTZ, M S. "A storage hierar-
chical addressing space for a computer
file system," PhD Thesis, Case Western
Umv., Cleveland, Ohio, 1973
SEVERANCE, e . G.; AND LOHMAN, G.
M. "Differential files: their application
to the maintenance of large databases,"
A C M Trans. Database Syst. 1, 3 (Sept.
1976), 256-267.
SKLAROFF, J. R. "Redundancy man-
agement technique for space shuttle
computers," I B M J . Res. Dev 20, 1 (Jan
1976), 20-28.
SMITH, J. L.; AND HOLDEN, T.
S. "Restart of an operating system hav-
ing a permanent file structure," Comput.
J 15, 1 (1972), 25-32.
STERN, J .A. Backup and recovery of
on-hne mformatmn tn a computer utd-
sty, Report MAC-TR-116, ProJect MAC,
MIT, Cambridge, Mass., Jan. 1974
TAYLOR, J. M. Redundancy and re-
covery tn the H I V E wrtual machzne,

CompuUng Surveys, Vol 10, No 2, June 1978

Recovery Techniques for Database Systems • 1 9 5

[TITM74]

[TONI75]

[VERH77a]

Rep no. 76010, Royal Signal and Radar
Establishment, Christchurch, UK, May
1976.
TITMAN, P. J "An experimental data
base system using binary relations," in
Data base management, J. W. Klimble,
and K. L. Koffeman (Eds.), Elsevier
North-Holland, Inc., New York, 1974,
pp. 351-360.
TONIK, A .S . "Checkpoint, restart and
recovery: Selected annotated bibliog-
raphy," FDT, Bull. ACM SIGMOD 7,
3-4 (1975), 72-76.
VERHOFSTAD, J. S .M. "Recovery and

[VERH77b]

[WIMB71]

[WILK75]

crash resistance In a filing system," in
Proc 1977ACM SIGMOD Int Conf on
Management of Data, ACM, New York,
pp. 158-167.
VERHOFSTAD, J. S. M "The construc-
tion of recoverable multi-level systems,"
PhD Thesis, Univ. Newcastle upon
Tyne, UK, August 1977.
WIMBROW, J. H "A large-scale inter-
active administrative system," IBM Syst
J. 10, 4 (1971), 260-282.
WILKES, M.V. T~me shartng computer
systems, Elsevier North-Holland, Inc.,
New York, 1975

RECEIVED SEPTEMBER 8, 1977; FINAL REVISION ACCEPTED MARCH 7, 1978

Computing Surveys, Vol 10, No 2, June 1978

