
The UNIX Time-Sharing System*

D. M. Ritchie and K. Thompson

ABSTRACT

Unix is a general-purpose, multi-user, interactive operating system for the larger
Digital Equipment Corporation PDP-11 and the Interdata 8/32 computers. It offers a
number of features seldom found even in larger operating systems, including

i A hierarchical file system incorporating demountable volumes,

ii Compatible file, device, and inter-process I/O,

iii The ability to initiate asynchronous processes,

iv System command language selectable on a per-user basis,

v Over 100 subsystems including a dozen languages,

vi High degree of portability.

This paper discusses the nature and implementation of the file system and of the user command
interface.

I. INTRODUCTION

There have been four versions of the Unix time-sharing system.
12 The earliest (circa 1969-70) ran on the Digital Equipment Corporation PDP-7 and -9 computers. The
second version ran on the unprotected PDP-11/20 computer. The third incorporated multiprogramming and
ran on the PDP-11/34, /40, /45, /60, and /70 computers; it is the one described in the previously published
version of this paper, and is also the most widely used today. This paper describes only the fourth, current
system that runs on the PDP-11/70 and the Interdata 8/32 computers. In fact, the differences among the
various systems is rather small; most of the revisions made to the originally published version of this paper,
aside from those concerned with style, had to do with details of the implementation of the file system.

Since PDP-11 Unix became operational in February, 1971, over 600 installations have been put into
service. Most of them are engaged in applications such as computer science education, the preparation and
formatting of documents and other textual material, the collection and processing of trouble data from vari-
ous switching machines within the Bell System, and recording and checking telephone service orders. Our
own installation is used mainly for research in operating systems, languages, computer networks, and other
topics in computer science, and also for document preparation.

Perhaps the most important achievement of Unix is to demonstrate that a powerful operating system
for interactive use need not be expensive either in equipment or in human effort: it can run on hardware
costing as little as $40,000, and less than two man-years were spent on the main system software. We
hope, however, that users find that the most important characteristics of the system are its simplicity,

* Copyright 1974, Association for Computing Machinery, Inc., reprinted by permission. This electronic edition of this pa-
per is a reprint of the version appearing in The Bell System Technical Journal57 no. 6, part 2 (July-August 1978). In turn,
that was a revised version of an article that appeared in Communications of the ACM,17, No. 7 (July 1974), pp. 365-375.
That article was a revised version of a paper presented at the Fourth ACM Symposium on Operating Systems Principles,
IBM Thomas J. Watson Research Center, Yorktown Heights, New York, October 15-17, 1973. Most of the differences
between versions occur between the C. ACM version and the BSTJ printing; we incorporated updated numbers and material
on portability.

- 2 -

elegance, and ease of use.

Besides the operating system proper, some major programs available under Unix are

C compiler
Text editor based on QED[1];
Assembler, linking loader, symbolic debugger
Phototypesetting and equation setting programs[2, 3]
Dozens of languages including Fortran 77, Basic, Snobol, APL, Algol 68, M6, TMG, Pascal

There is a host of maintenance, utility, recreation and novelty programs, all written locally. The Unix user
community, which numbers in the thousands, has contributed many more programs and languages. It is
worth noting that the system is totally self-supporting. All Unix software is maintained on the system; like-
wise, this paper and all other documents in this issue were generated and formatted by the Unix editor and
text formatting programs.

II. HARDWARE AND SOFTWARE ENVIRONMENT

The PDP-11/70 on which the Research Unix system is installed is a 16-bit word (8-bit byte) com-
puter with 768K bytes of core memory; the system kernel occupies 90K bytes about equally divided
between code and data tables. This system, however, includes a very large number of device drivers and
enjoys a generous allotment of space for I/O buffers and system tables; a minimal system capable of run-
ning the software mentioned above can require as little as 96K bytes of core altogether. There are even
larger installations; see the description of the PWB/UNIX systems [4, 5], for example. There are also much
smaller, though somewhat restricted, versions of the system [6].

Our own PDP-11 has two 200-Mb moving-head disks for file system storage and swapping. There
are 20 variable-speed communications interfaces attached to 300- and 1200-baud data sets, and an addi-
tional 12 communication lines hard-wired to 9600-baud terminals and satellite computers. There are also
several 2400- and 4800-baud synchronous communication interfaces used for machine-to-machine file
transfer. Finally, there is a variety of miscellaneous devices including nine-track magnetic tape, a line
printer, a voice synthesizer, a phototypesetter, a digital switching network, and a chess machine.

The preponderance of Unix software is written in the abovementioned C language [7]. Early versions
of the operating system were written in assembly language, but during the summer of 1973, it was rewritten
in C. The size of the new system was about one-third greater than that of the old. Since the new system not
only became much easier to understand and to modify but also included many functional improvements,
including multiprogramming and the ability to share reentrant code among several user programs, we con-
sider this increase in size quite acceptable.

III. THE FILE SYSTEM

The most important role of the system is to provide a file system. From the point of view of the user,
there are three kinds of files: ordinary disk files, directories, and special files.

3.1 Ordinary files

A file contains whatever information the user places on it, for example, symbolic or binary (object)
programs. No particular structuring is expected by the system. A file of text consists simply of a string of
characters, with lines demarcated by the newline character. Binary programs are sequences of words as
they will appear in core memory when the program starts executing. A few user programs manipulate files
with more structure; for example, the assembler generates, and the loader expects, an object file in a partic-
ular format. However, the structure of files is controlled by the programs that use them, not by the system.

3.2 Directories

Directories provide the mapping between the names of files and the files themselves, and thus induce
a structure on the file system as a whole. Each user has a directory of his own files; he may also create sub-
directories to contain groups of files conveniently treated together. A directory behaves exactly like an
ordinary file except that it cannot be written on by unprivileged programs, so that the system controls the

- 3 -

contents of directories. However, anyone with appropriate permission may read a directory just like any
other file.

The system maintains several directories for its own use. One of these is theroot directory. All files
in the system can be found by tracing a path through a chain of directories until the desired file is reached.
The starting point for such searches is often theroot. Other system directories contain all the programs
provided for general use; that is, all thecommands. As will be seen, however, it is by no means necessary
that a program reside in one of these directories for it to be executed.

Files are named by sequences of 14 or fewer characters. When the name of a file is specified to the
system, it may be in the form of apath name, which is a sequence of directory names separated by slashes,
‘‘/ ’’, and ending in a file name. If the sequence begins with a slash, the search begins in the root directory.
The name/alpha/beta/gammacauses the system to search the root for directoryalpha, then to search
alpha for beta, finally to find gamma in beta. gamma may be an ordinary file, a directory, or a special
file. As a limiting case, the name ‘‘/’’ refers to the root itself.

A path name not starting with ‘‘/ ’’ causes the system to begin the search in the user’s current direc-
tory. Thus, the namealpha/beta specifies the file namedbeta in subdirectoryalpha of the current direc-
tory. The simplest kind of name, for example,alpha, refers to a file that itself is found in the current direc-
tory. As another limiting case, the null file name refers to the current directory.

The same non-directory file may appear in several directories under possibly different names. This
feature is calledlinking; a directory entry for a file is sometimes called a link. The Unix system differs
from other systems in which linking is permitted in that all links to a file have equal status. That is, a file
does not exist within a particular directory; the directory entry for a file consists merely of its name and a
pointer to the information actually describing the file. Thus a file exists independently of any directory
entry, although in practice a file is made to disappear along with the last link to it.

Each directory always has at least two entries. The name ‘‘. ’’ in each directory refers to the direc-
tory itself. Thus a program may read the current directory under the name ‘‘. ’’ without knowing its com-
plete path name. The name ‘‘. . ’’ by convention refers to the parent of the directory in which it appears,
that is, to the directory in which it was created.

The directory structure is constrained to have the form of a rooted tree. Except for the special entries
‘‘ . ’’ and ‘‘ . . ’’, each directory must appear as an entry in exactly one other directory, which is its parent.
The reason for this is to simplify the writing of programs that visit subtrees of the directory structure, and
more important, to avoid the separation of portions of the hierarchy. If arbitrary links to directories were
permitted, it would be quite difficult to detect when the last connection from the root to a directory was sev-
ered.

3.3 Special files

Special files constitute the most unusual feature of the Unix file system. Each supported I/O device
is associated with at least one such file. Special files are read and written just like ordinary disk files, but
requests to read or write result in activation of the associated device. An entry for each special file resides
in directory/dev, although a link may be made to one of these files just as it may to an ordinary file. Thus,
for example, to write on a magnetic tape one may write on the file/dev/mt. Special files exist for each
communication line, each disk, each tape drive, and for physical main memory. Of course, the active disks
and the memory special file are protected from indiscriminate access.

There is a threefold advantage in treating I/O devices this way: file and device I/O are as similar as
possible; file and device names have the same syntax and meaning, so that a program expecting a file name
as a parameter can be passed a device name; finally, special files are subject to the same protection mecha-
nism as regular files.

3.4 Removable file systems

Although the root of the file system is always stored on the same device, it is not necessary that the
entire file system hierarchy reside on this device. There is amount system request with two arguments: the
name of an existing ordinary file, and the name of a special file whose associated storage volume (e.g., a
disk pack) should have the structure of an independent file system containing its own directory hierarchy.

- 4 -

The effect ofmount is to cause references to the heretofore ordinary file to refer instead to the root direc-
tory of the file system on the removable volume. In effect,mount replaces a leaf of the hierarchy tree (the
ordinary file) by a whole new subtree (the hierarchy stored on the removable volume). After themount,
there is virtually no distinction between files on the removable volume and those in the permanent file sys-
tem. In our installation, for example, the root directory resides on a small partition of one of our disk
drives, while the other drive, which contains the user’s files, is mounted by the system initialization
sequence. A mountable file system is generated by writing on its corresponding special file. A utility pro-
gram is available to create an empty file system, or one may simply copy an existing file system.

There is only one exception to the rule of identical treatment of files on different devices: no link
may exist between one file system hierarchy and another. This restriction is enforced so as to avoid the
elaborate bookkeeping that would otherwise be required to assure removal of the links whenever the
removable volume is dismounted.

3.5 Protection

Although the access control scheme is quite simple, it has some unusual features. Each user of the
system is assigned a unique user identification number. When a file is created, it is marked with the user
ID of its owner. Also given for new files is a set of ten protection bits. Nine of these specify independently
read, write, and execute permission for the owner of the file, for other members of his group, and for all
remaining users.

If the tenth bit is on, the system will temporarily change the user identification (hereafter, user ID) of
the current user to that of the creator of the file whenever the file is executed as a program. This change in
user ID is effective only during the execution of the program that calls for it. The set-user-ID feature pro-
vides for privileged programs that may use files inaccessible to other users. For example, a program may
keep an accounting file that should neither be read nor changed except by the program itself. If the set-
user-ID bit is on for the program, it may access the file although this access might be forbidden to other
programs invoked by the given program’s user. Since the actual user ID of the invoker of any program is
always available, set-user-ID programs may take any measures desired to satisfy themselves as to their
invoker’s credentials. This mechanism is used to allow users to execute the carefully written commands
that call privileged system entries. For example, there is a system entry invokable only by the ‘‘super-
user’’ (below) that creates an empty directory. As indicated above, directories are expected to have entries
for ‘‘ . ’’ and ‘‘ . . ’’. The command which creates a directory is owned by the super-user and has the set-
user-ID bit set. After it checks its invoker’s authorization to create the specified directory, it creates it and
makes the entries for ‘‘. ’’ and ‘‘ . . ’’.

Because anyone may set the set-user-ID bit on one of his own files, this mechanism is generally
available without administrative intervention. For example, this protection scheme easily solves the MOO
accounting problem posed by ‘‘Aleph-null.’’ [8]

The system recognizes one particular user ID (that of the ‘‘super-user’’) as exempt from the usual
constraints on file access; thus (for example), programs may be written to dump and reload the file system
without unwanted interference from the protection system.

3.6 I/O calls

The system calls to do I/O are designed to eliminate the differences between the various devices and
styles of access. There is no distinction between ‘‘random’’ and ‘‘sequential’’ I/O, nor is any logical record
size imposed by the system. The size of an ordinary file is determined by the number of bytes written on it;
no predetermination of the size of a file is necessary or possible.

To illustrate the essentials of I/O, some of the basic calls are summarized below in an anonymous
language that will indicate the required parameters without getting into the underlying complexities. Each
call to the system may potentially result in an error return, which for simplicity is not represented in the
calling sequence.

To read or write a file assumed to exist already, it must be opened by the following call:

filep = open(name, flag)

- 5 -

wherename indicates the name of the file. An arbitrary path name may be given. Theflag argument indi-
cates whether the file is to be read, written, or ‘‘updated,’’ that is, read and written simultaneously.

The returned valuefilep is called afile descriptor. It is a small integer used to identify the file in
subsequent calls to read, write, or otherwise manipulate the file.

To create a new file or completely rewrite an old one, there is acreate system call that creates the
given file if it does not exist, or truncates it to zero length if it does exist;createalso opens the new file for
writing and, likeopen, returns a file descriptor.

The file system maintains no locks visible to the user, nor is there any restriction on the number of
users who may have a file open for reading or writing. Although it is possible for the contents of a file to
become scrambled when two users write on it simultaneously, in practice difficulties do not arise. We take
the view that locks are neither necessary nor sufficient, in our environment, to prevent interference between
users of the same file. They are unnecessary because we are not faced with large, single-file data bases
maintained by independent processes. They are insufficient because locks in the ordinary sense, whereby
one user is prevented from writing on a file that another user is reading, cannot prevent confusion when, for
example, both users are editing a file with an editor that makes a copy of the file being edited.

There are, however, sufficient internal interlocks to maintain the logical consistency of the file sys-
tem when two users engage simultaneously in activities such as writing on the same file, creating files in
the same directory, or deleting each other’s open files.

Except as indicated below, reading and writing are sequential. This means that if a particular byte in
the file was the last byte written (or read), the next I/O call implicitly refers to the immediately following
byte. For each open file there is a pointer, maintained inside the system, that indicates the next byte to be
read or written. Ifn bytes are read or written, the pointer advances byn bytes.

Once a file is open, the following calls may be used:

n = read(filep, buffer, count)
n = write(filep, buffer, count)

Up to count bytes are transmitted between the file specified byfilep and the byte array specified bybuffer .
The returned valuen is the number of bytes actually transmitted. In thewrite case,n is the same ascount
except under exceptional conditions, such as I/O errors or end of physical medium on special files; in a
read, however,n may without error be less thancount. If the read pointer is so near the end of the file that
readingcount characters would cause reading beyond the end, only sufficient bytes are transmitted to reach
the end of the file; also, typewriter-like terminals never return more than one line of input. When aread
call returns withn equal to zero, the end of the file has been reached. For disk files this occurs when the
read pointer becomes equal to the current size of the file. It is possible to generate an end-of-file from a ter-
minal by use of an escape sequence that depends on the device used.

Bytes written affect only those parts of a file implied by the position of the write pointer and the
count; no other part of the file is changed. If the last byte lies beyond the end of the file, the file is made to
grow as needed.

To do random (direct-access) I/O it is only necessary to move the read or write pointer to the appro-
priate location in the file.

location = lseek(filep, offset, base)

The pointer associated withfilep is moved to a positionoffsetbytes from the beginning of the file, from the
current position of the pointer, or from the end of the file, depending onbase. offsetmay be negative. For
some devices (e.g., paper tape and terminals) seek calls are ignored. The actual offset from the beginning
of the file to which the pointer was moved is returned inlocation.

There are several additional system entries having to do with I/O and with the file system that will
not be discussed. For example: close a file, get the status of a file, change the protection mode or the owner
of a file, create a directory, make a link to an existing file, delete a file.

- 6 -

IV. IMPLEMENTATION OF THE FILE SYSTEM

As mentioned in Section 3.2 above, a directory entry contains only a name for the associated file and
a pointer to the file itself. This pointer is an integer called thei-number(for index number) of the file.
When the file is accessed, its i-number is used as an index into a system table (thei-list) stored in a known
part of the device on which the directory resides. The entry found thereby (the file’si-node) contains the
description of the file:

i the user and group-ID of its owner

ii its protection bits

iii the physical disk or tape addresses for the file contents

iv its size

v time of creation, last use, and last modification

vi the number of links to the file, that is, the number of times it appears in a directory

vii a code indicating whether the file is a directory, an ordinary file, or a special file.

The purpose of anopenor createsystem call is to turn the path name given by the user into an i-number by
searching the explicitly or implicitly named directories. Once a file is open, its device, i-number, and
read/write pointer are stored in a system table indexed by the file descriptor returned by theopenor create.
Thus, during a subsequent call to read or write the file, the descriptor may be easily related to the informa-
tion necessary to access the file.

When a new file is created, an i-node is allocated for it and a directory entry is made that contains the
name of the file and the i-node number. Making a link to an existing file involves creating a directory entry
with the new name, copying the i-number from the original file entry, and incrementing the link-count field
of the i-node. Removing (deleting) a file is done by decrementing the link-count of the i-node specified by
its directory entry and erasing the directory entry. If the link-count drops to 0, any disk blocks in the file
are freed and the i-node is de-allocated.

The space on all disks that contain a file system is divided into a number of 512-byte blocks logically
addressed from 0 up to a limit that depends on the device. There is space in the i-node of each file for 13
device addresses. For nonspecial files, the first 10 device addresses point at the first 10 blocks of the file.
If the file is larger than 10 blocks, the 11 device address points to an indirect block containing up to 128
addresses of additional blocks in the file. Still larger files use the twelfth device address of the i-node to
point to a double-indirect block naming 128 indirect blocks, each pointing to 128 blocks of the file. If
required, the thirteenth device address is a triple-indirect block. Thus files may conceptually grow to
[(10+128+128ˆ2+128ˆ3)*512] bytes. Once opened, bytes numbered below 5120 can be read with a single
disk access; bytes in the range 5120 to 70,656 require two accesses; bytes in the range 70,656 to 8,459,264
require three accesses; bytes from there to the largest file (1,082,201,088) require four accesses. In prac-
tice, a device cache mechanism (see below) proves effective in eliminating most of the indirect fetches.

The foregoing discussion applies to ordinary files. When an I/O request is made to a file whose i-
node indicates that it is special, the last 12 device address words are immaterial, and the first specifies an
internaldevice name, which is interpreted as a pair of numbers representing, respectively, a device type and
subdevice number. The device type indicates which system routine will deal with I/O on that device; the
subdevice number selects, for example, a disk drive attached to a particular controller or one of several sim-
ilar terminal interfaces.

In this environment, the implementation of themount system call (Section 3.4) is quite straightfor-
ward. mount maintains a system table whose argument is the i-number and device name of the ordinary
file specified during themount, and whose corresponding value is the device name of the indicated special
file. This table is searched for each i-number/device pair that turns up while a path name is being scanned
during anopenor create; if a match is found, the i-number is replaced by the i-number of the root directory
and the device name is replaced by the table value.

To the user, both reading and writing of files appear to be synchronous and unbuffered. That is,
immediately after return from aread call the data are available; conversely, after awrite the user’s
workspace may be reused. In fact, the system maintains a rather complicated buffering mechanism that

- 7 -

reduces greatly the number of I/O operations required to access a file. Suppose awrite call is made speci-
fying transmission of a single byte. The system will search its buffers to see whether the affected disk
block currently resides in main memory; if not, it will be read in from the device. Then the affected byte is
replaced in the buffer and an entry is made in a list of blocks to be written. The return from thewrite call
may then take place, although the actual I/O may not be completed until a later time. Conversely, if a sin-
gle byte is read, the system determines whether the secondary storage block in which the byte is located is
already in one of the system’s buffers; if so, the byte can be returned immediately. If not, the block is read
into a buffer and the byte picked out.

The system recognizes when a program has made accesses to sequential blocks of a file, and asyn-
chronously pre-reads the next block. This significantly reduces the running time of most programs while
adding little to system overhead.

A program that reads or writes files in units of 512 bytes has an advantage over a program that reads
or writes a single byte at a time, but the gain is not immense; it comes mainly from the avoidance of system
overhead. If a program is used rarely or does no great volume of I/O, it may quite reasonably read and
write in units as small as it wishes.

The notion of the i-list is an unusual feature of Unix. In practice, this method of organizing the file
system has proved quite reliable and easy to deal with. To the system itself, one of its strengths is the fact
that each file has a short, unambiguous name related in a simple way to the protection, addressing, and
other information needed to access the file. It also permits a quite simple and rapid algorithm for checking
the consistency of a file system, for example, verification that the portions of each device containing useful
information and those free to be allocated are disjoint and together exhaust the space on the device. This
algorithm is independent of the directory hierarchy, because it need only scan the linearly organized i-list.
At the same time the notion of the i-list induces certain peculiarities not found in other file system organiza-
tions. For example, there is the question of who is to be charged for the space a file occupies, because all
directory entries for a file have equal status. Charging the owner of a file is unfair in general, for one user
may create a file, another may link to it, and the first user may delete the file. The first user is still the
owner of the file, but it should be charged to the second user. The simplest reasonably fair algorithm seems
to be to spread the charges equally among users who have links to a file. Many installations avoid the issue
by not charging any fees at all.

V. PROCESSES AND IMAGES

An imageis a computer execution environment. It includes a memory image, general register values,
status of open files, current directory and the like. An image is the current state of a pseudo-computer.

A processis the execution of an image. While the processor is executing on behalf of a process, the
image must reside in main memory; during the execution of other processes it remains in main memory
unless the appearance of an active, higher-priority process forces it to be swapped out to the disk.

The user-memory part of an image is divided into three logical segments. The program text segment
begins at location 0 in the virtual address space. During execution, this segment is write-protected and a
single copy of it is shared among all processes executing the same program. At the first hardware protec-
tion byte boundary above the program text segment in the virtual address space begins a non-shared, writ-
able data segment, the size of which may be extended by a system call. Starting at the highest address in
the virtual address space is a stack segment, which automatically grows downward as the stack pointer fluc-
tuates.

5.1 Processes

Except while the system is bootstrapping itself into operation, a new process can come into existence
only by use of thefork system call:

processid = fork()

Whenfork is executed, the process splits into two independently executing processes. The two processes
have independent copies of the original memory image, and share all open files. The new processes differ
only in that one is considered the parent process: in the parent, the returnedprocessidactually identifies the

- 8 -

child process and is never 0, while in the child, the returned value is always 0.

Because the values returned byfork in the parent and child process are distinguishable, each process
may determine whether it is the parent or child.

5.2 Pipes

Processes may communicate with related processes using the same systemread andwrite calls that
are used for file-system I/O. The call:

filep = pipe()

returns a file descriptorfilep and creates an inter-process channel called apipe. This channel, like other
open files, is passed from parent to child process in the image by thefork call. A read using a pipe file
descriptor waits until another process writes using the file descriptor for the same pipe. At this point, data
are passed between the images of the two processes. Neither process need know that a pipe, rather than an
ordinary file, is involved.

Although inter-process communication via pipes is a quite valuable tool (see Section 6.2), it is not a
completely general mechanism, because the pipe must be set up by a common ancestor of the processes
involved.

5.3 Execution of programs

Another major system primitive is invoked by

execute(file, arg1, arg2, ... , argn)

which requests the system to read in and execute the program named byfile, passing it string arguments
arg1, arg2, ..., argn. All the code and data in the process invokingexecuteis replaced from thefile, but
open files, current directory, and inter-process relationships are unaltered. Only if the call fails, for exam-
ple becausefile could not be found or because its execute-permission bit was not set, does a return take
place from theexecuteprimitive; it resembles a ‘‘jump’’ machine instruction rather than a subroutine call.

5.4 Process synchronization

Another process control system call:

processid = wait(status)

causes its caller to suspend execution until one of its children has completed execution. Thenwait returns
theprocessidof the terminated process. An error return is taken if the calling process has no descendants.
Certain status from the child process is also available.

5.5 Termination

Lastly:

exit(status)

terminates a process, destroys its image, closes its open files, and generally obliterates it. The parent is
notified through thewait primitive, andstatus is made available to it. Processes may also terminate as a
result of various illegal actions or user-generated signals (Section VII below).

VI. THE SHELL

For most users, communication with the system is carried on with the aid of a program called the
shell. The shell is a command-line interpreter: it reads lines typed by the user and interprets them as
requests to execute other programs. (The shell is described fully elsewhere [9], so this section will discuss
only the theory of its operation.) In simplest form, a command line consists of the command name fol-
lowed by arguments to the command, all separated by spaces:

command arg1 arg2 ... argn

- 9 -

The shell splits up the command name and the arguments into separate strings. Then a file with name
command is sought;command may be a path name including the ‘‘/’’ character to specify any file in the
system. Ifcommand is found, it is brought into memory and executed. The arguments collected by the
shell are accessible to the command. When the command is finished, the shell resumes its own execution,
and indicates its readiness to accept another command by typing a prompt character.

If file commandcannot be found, the shell generally prefixes a string such as/bin/ to commandand
attempts again to find the file. Directory/bin contains commands intended to be generally used. (The
sequence of directories to be searched may be changed by user request.)

6.1 Standard I/O

The discussion of I/O in Section III above seems to imply that every file used by a program must be
opened or created by the program in order to get a file descriptor for the file. Programs executed by the
shell, however, start off with three open files with file descriptors 0, 1, and 2. As such a program begins
execution, file 1 is open for writing, and is best understood as the standard output file. Except under cir-
cumstances indicated below, this file is the user’s terminal. Thus programs that wish to write informative
information ordinarily use file descriptor 1. Conversely, file 0 starts off open for reading, and programs
that wish to read messages typed by the user read this file.

The shell is able to change the standard assignments of these file descriptors from the user’s terminal
printer and keyboard. If one of the arguments to a command is prefixed by ‘‘>’’, file descriptor 1 will, for
the duration of the command, refer to the file named after the ‘‘>’’. For example:

ls

ordinarily lists, on the typewriter, the names of the files in the current directory. The command:

ls >there

creates a file calledthere and places the listing there. Thus the argument>there means ‘‘place output on
there.’’ On the other hand:

ed

ordinarily enters the editor, which takes requests from the user via his keyboard. The command

ed <script

interpretsscript as a file of editor commands; thus ‘‘<script’’ means ‘‘take input fromscript.’’

Although the file name following ‘‘<’’ or ‘‘>’’ appears to be an argument to the command, in fact it
is interpreted completely by the shell and is not passed to the command at all. Thus no special coding to
handle I/O redirection is needed within each command; the command need merely use the standard file
descriptors 0 and 1 where appropriate.

File descriptor 2 is, like file 1, ordinarily associated with the terminal output stream. When an
output-diversion request with ‘‘>’’ is specified, file 2 remains attached to the terminal, so that commands
may produce diagnostic messages that do not silently end up in the output file.

6.2 Filters

An extension of the standard I/O notion is used to direct output from one command to the input of
another. A sequence of commands separated by vertical bars causes the shell to execute all the commands
simultaneously and to arrange that the standard output of each command be delivered to the standard input
of the next command in the sequence. Thus in the command line:

ls pr −2 opr

ls lists the names of the files in the current directory; its output is passed topr , which paginates its input
with dated headings. (The argument ‘‘−2’’ requests double-column output.) Likewise, the output frompr
is input toopr; this command spools its input onto a file for off-line printing.

This procedure could have been carried out more clumsily by:

- 10 -

ls >temp1
pr −2 <temp1 >temp2
opr <temp2

followed by removal of the temporary files. In the absence of the ability to redirect output and input, a still
clumsier method would have been to require thels command to accept user requests to paginate its output,
to print in multi-column format, and to arrange that its output be delivered off-line. Actually it would be
surprising, and in fact unwise for efficiency reasons, to expect authors of commands such asls to provide
such a wide variety of output options.

A program such aspr which copies its standard input to its standard output (with processing) is
called afilter. Some filters that we have found useful perform character transliteration, selection of lines
according to a pattern, sorting of the input, and encryption and decryption.

6.3 Command separators; multitasking

Another feature provided by the shell is relatively straightforward. Commands need not be on differ-
ent lines; instead they may be separated by semicolons:

ls; ed

will first list the contents of the current directory, then enter the editor.

A related feature is more interesting. If a command is followed by ‘‘& ,’’ the shell will not wait for
the command to finish before prompting again; instead, it is ready immediately to accept a new command.
For example:

as source >output &

causessourceto be assembled, with diagnostic output going tooutput; no matter how long the assembly
takes, the shell returns immediately. When the shell does not wait for the completion of a command, the
identification number of the process running that command is printed. This identification may be used to
wait for the completion of the command or to terminate it. The ‘‘& ’’ may be used several times in a line:

as source >output & ls >files &

does both the assembly and the listing in the background. In these examples, an output file other than the
terminal was provided; if this had not been done, the outputs of the various commands would have been
intermingled.

The shell also allows parentheses in the above operations. For example:

(date; ls) >x &

writes the current date and time followed by a list of the current directory onto the filex. The shell also
returns immediately for another request.

6.4 The shell as a command; command files

The shell is itself a command, and may be called recursively. Suppose filetryout contains the lines:

as source
mv a.out testprog
testprog

Themv command causes the filea.out to be renamedtestprog. a.out is the (binary) output of the assem-
bler, ready to be executed. Thus if the three lines above were typed on the keyboard,sourcewould be
assembled, the resulting program renamedtestprog, andtestprog executed. When the lines are intryout ,
the command:

sh <tryout

would cause the shellsh to execute the commands sequentially.

The shell has further capabilities, including the ability to substitute parameters and to construct

- 11 -

argument lists from a specified subset of the file names in a directory. It also provides general conditional
and looping constructions.

6.5 Implementation of the shell

The outline of the operation of the shell can now be understood. Most of the time, the shell is wait-
ing for the user to type a command. When the newline character ending the line is typed, the shell’sread
call returns. The shell analyzes the command line, putting the arguments in a form appropriate forexecute.
Thenfork is called. The child process, whose code of course is still that of the shell, attempts to perform
anexecutewith the appropriate arguments. If successful, this will bring in and start execution of the pro-
gram whose name was given. Meanwhile, the other process resulting from thefork , which is the parent
process,waits for the child process to die. When this happens, the shell knows the command is finished, so
it types its prompt and reads the keyboard to obtain another command.

Given this framework, the implementation of background processes is trivial; whenever a command
line contains ‘‘& ,’’ the shell merely refrains from waiting for the process that it created to execute the com-
mand.

Happily, all of this mechanism meshes very nicely with the notion of standard input and output files.
When a process is created by thefork primitive, it inherits not only the memory image of its parent but also
all the files currently open in its parent, including those with file descriptors 0, 1, and 2. The shell, of
course, uses these files to read command lines and to write its prompts and diagnostics, and in the ordinary
case its children the command programs inherit them automatically. When an argument with ‘‘<’’ or
‘‘>’’ is given, however, the offspring process, just before it performsexecute,makes the standard I/O file
descriptor (0 or 1, respectively) refer to the named file. This is easy because, by agreement, the smallest
unused file descriptor is assigned when a new file isopened (orcreated); it is only necessary to close file 0
(or 1) and open the named file. Because the process in which the command program runs simply termi-
nates when it is through, the association between a file specified after ‘‘<’’ or ‘‘>’’ and file descriptor 0 or 1
is ended automatically when the process dies. Therefore the shell need not know the actual names of the
files that are its own standard input and output, because it need never reopen them.

Filters are straightforward extensions of standard I/O redirection with pipes used instead of files.

In ordinary circumstances, the main loop of the shell never terminates. (The main loop includes the
branch of the return fromfork belonging to the parent process; that is, the branch that does await, then
reads another command line.) The one thing that causes the shell to terminate is discovering an end-of-file
condition on its input file. Thus, when the shell is executed as a command with a given input file, as in:

sh <comfile

the commands incomfile will be executed until the end ofcomfile is reached; then the instance of the shell
invoked bysh will terminate. Because this shell process is the child of another instance of the shell, the
wait executed in the latter will return, and another command may then be processed.

6.6 Initialization

The instances of the shell to which users type commands are themselves children of another process.
The last step in the initialization of the system is the creation of a single process and the invocation (via
execute) of a program calledinit . The role ofinit is to create one process for each terminal channel. The
various subinstances ofinit open the appropriate terminals for input and output on files 0, 1, and 2, waiting,
if necessary, for carrier to be established on dial-up lines. Then a message is typed out requesting that the
user log in. When the user types a name or other identification, the appropriate instance ofinit wakes up,
receives the log-in line, and reads a password file. If the user’s name is found, and if he is able to supply
the correct password,init changes to the user’s default current directory, sets the process’s user ID to that
of the person logging in, and performs anexecuteof the shell. At this point, the shell is ready to receive
commands and the logging-in protocol is complete.

Meanwhile, the mainstream path ofinit (the parent of all the subinstances of itself that will later
become shells) does await. If one of the child processes terminates, either because a shell found an end of
file or because a user typed an incorrect name or password, this path ofinit simply recreates the defunct

- 12 -

process, which in turn reopens the appropriate input and output files and types another log-in message.
Thus a user may log out simply by typing the end-of-file sequence to the shell.

6.7 Other programs as shell

The shell as described above is designed to allow users full access to the facilities of the system,
because it will invoke the execution of any program with appropriate protection mode. Sometimes, how-
ever, a different interface to the system is desirable, and this feature is easily arranged for.

Recall that after a user has successfully logged in by supplying a name and password,init ordinarily
invokes the shell to interpret command lines. The user’s entry in the password file may contain the name of
a program to be invoked after log-in instead of the shell. This program is free to interpret the user’s mes-
sages in any way it wishes.

For example, the password file entries for users of a secretarial editing system might specify that the
editored is to be used instead of the shell. Thus when users of the editing system log in, they are inside the
editor and can begin work immediately; also, they can be prevented from invoking programs not intended
for their use. In practice, it has proved desirable to allow a temporary escape from the editor to execute the
formatting program and other utilities.

Several of the games (e.g., chess, blackjack, 3D tic-tac-toe) available on the system illustrate a much
more severely restricted environment. For each of these, an entry exists in the password file specifying that
the appropriate game-playing program is to be invoked instead of the shell. People who log in as a player
of one of these games find themselves limited to the game and unable to investigate the (presumably more
interesting) offerings of the Unix system as a whole.

VII. TRAPS

The PDP-11 hardware detects a number of program faults, such as references to non-existent mem-
ory, unimplemented instructions, and odd addresses used where an even address is required. Such faults
cause the processor to trap to a system routine. Unless other arrangements have been made, an illegal
action causes the system to terminate the process and to write its image on filecore in the current directory.
A debugger can be used to determine the state of the program at the time of the fault.

Programs that are looping, that produce unwanted output, or about which the user has second
thoughts may be halted by the use of theinterrupt signal, which is generated by typing the ‘‘delete’’ char-
acter. Unless special action has been taken, this signal simply causes the program to cease execution with-
out producing acore file. There is also aquit signal used to force an image file to be produced. Thus pro-
grams that loop unexpectedly may be halted and the remains inspected without prearrangement.

The hardware-generated faults and the interrupt and quit signals can, by request, be either ignored or
caught by a process. For example, the shell ignores quits to prevent a quit from logging the user out. The
editor catches interrupts and returns to its command level. This is useful for stopping long printouts with-
out losing work in progress (the editor manipulates a copy of the file it is editing). In systems without
floating-point hardware, unimplemented instructions are caught and floating-point instructions are inter-
preted.

VIII. PERSPECTIVE

Perhaps paradoxically, the success of the Unix system is largely due to the fact that it was not
designed to meet any predefined objectives. The first version was written when one of us (Thompson), dis-
satisfied with the available computer facilities, discovered a little-used PDP-7 and set out to create a more
hospitable environment. This (essentially personal) effort was sufficiently successful to gain the interest of
the other author and several colleagues, and later to justify the acquisition of the PDP-11/20, specifically to
support a text editing and formatting system. When in turn the 11/20 was outgrown, the system had proved
useful enough to persuade management to invest in the PDP-11/45, and later in the PDP-11/70 and Inter-
data 8/32 machines, upon which it developed to its present form. Our goals throughout the effort, when
articulated at all, have always been to build a comfortable relationship with the machine and to explore
ideas and inventions in operating systems and other software. We have not been faced with the need to sat-
isfy someone else’s requirements, and for this freedom we are grateful.

- 13 -

Three considerations that influenced the design of Unix are visible in retrospect.

First: because we are programmers, we naturally designed the system to make it easy to write, test,
and run programs. The most important expression of our desire for programming convenience was that the
system was arranged for interactive use, even though the original version only supported one user. We
believe that a properly designed interactive system is much more productive and satisfying to use than a
‘‘batch’’ system. Moreover, such a system is rather easily adaptable to noninteractive use, while the con-
verse is not true.

Second: there have always been fairly severe size constraints on the system and its software. Given
the partially antagonistic desires for reasonable efficiency and expressive power, the size constraint has
encouraged not only economy, but also a certain elegance of design. This may be a thinly disguised ver-
sion of the ‘‘salvation through suffering’’ philosophy, but in our case it worked.

Third: nearly from the start, the system was able to, and did, maintain itself. This fact is more impor-
tant than it might seem. If designers of a system are forced to use that system, they quickly become aware
of its functional and superficial deficiencies and are strongly motivated to correct them before it is too late.
Because all source programs were always available and easily modified on-line, we were willing to revise
and rewrite the system and its software when new ideas were invented, discovered, or suggested by others.

The aspects of Unix discussed in this paper exhibit clearly at least the first two of these design con-
siderations. The interface to the file system, for example, is extremely convenient from a programming
standpoint. The lowest possible interface level is designed to eliminate distinctions between the various
devices and files and between direct and sequential access. No large ‘‘access method’’ routines are
required to insulate the programmer from the system calls; in fact, all user programs either call the system
directly or use a small library program, less than a page long, that buffers a number of characters and reads
or writes them all at once.

Another important aspect of programming convenience is that there are no ‘‘control blocks’’ with a
complicated structure partially maintained by and depended on by the file system or other system calls.
Generally speaking, the contents of a program’s address space are the property of the program, and we have
tried to avoid placing restrictions on the data structures within that address space.

Given the requirement that all programs should be usable with any file or device as input or output, it
is also desirable to push device-dependent considerations into the operating system itself. The only alterna-
tives seem to be to load, with all programs, routines for dealing with each device, which is expensive in
space, or to depend on some means of dynamically linking to the routine appropriate to each device when it
is actually needed, which is expensive either in overhead or in hardware.

Likewise, the process-control scheme and the command interface have proved both convenient and
efficient. Because the shell operates as an ordinary, swappable user program, it consumes no ‘‘wired-
down’’ space in the system proper, and it may be made as powerful as desired at little cost. In particular,
given the framework in which the shell executes as a process that spawns other processes to perform com-
mands, the notions of I/O redirection, background processes, command files, and user-selectable system
interfaces all become essentially trivial to implement.

Influences

The success of Unix lies not so much in new inventions but rather in the full exploitation of a care-
fully selected set of fertile ideas, and especially in showing that they can be keys to the implementation of a
small yet powerful operating system.

The fork operation, essentially as we implemented it, was present in the GENIE time-sharing system
[10]. On a number of points we were influenced by Multics, which suggested the particular form of the I/O
system calls [11], and both the name of the shell and its general functions. The notion that the shell should
create a process for each command was also suggested to us by the early design of Multics, although in that
system it was later dropped for efficiency reasons. A similar scheme is used by TENEX [12].

- 14 -

IX. STATISTICS

The following numbers are presented to suggest the scale of the Research Unix operation. Those of
our users not involved in document preparation tend to use the system for program development, especially
language work. There are few important ‘‘applications’’ programs.

Overall, we have today:

125 user population
33 maximum simultaneous users

1,630 directories
28,300 files

301,700 512-byte secondary storage blocks used

There is a ‘‘background’’ process that runs at the lowest possible priority; it is used to soak up any idle
CPU time. It has been used to produce a million-digit approximation to the constante, and other semi-
infinite problems. Not counting this background work, we average daily:

13,500 commands
9.6 CPU hours
230 connect hours
62 different users

240 log-ins

X. ACKNOWLEDGMENTS

The contributors to Unix are, in the traditional but here especially apposite phrase, too numerous to
mention. Certainly, collective salutes are due to our colleagues in the Computing Science Research Center.
R. H. Canaday contributed much to the basic design of the file system. We are particularly appreciative of
the inventiveness, thoughtful criticism, and constant support of R. Morris, M. D. McIlroy, and J. F.
Ossanna.

References

1. L. P. Deutsch and B. W. Lampson, ‘An online editor,’ J. Comm. Assoc. Comp. Mach.10 12,
December 1967 pp. 793-799, 803

2. B. W. Kernighan and L. L. Cherry, ‘A System for Typesetting Mathematics,’ J. Comm. Assoc.
Comp. Mach.18,pp. 151-157, March 1975.

3. B. W. Kernighan, M. E. Lesk and J. F. Ossanna, ‘Document Preparation,’ Bell Sys. Tech. J.57 6
part 2, pp. 2115-2135, July-August 1978.

4. T. A. Dolotta and J. R. Mashey, ‘An Introduction to the Programmer’s Workbench,’ Proc. 2nd Int.
Conf. on Software Engineering, October 13-15, 1976, pp. 164-168.

5. T. A. Dolotta, R. C. Haight, and J. R. Mashey, ‘The Programmer’s Workbench,’ Bell Sys. Tech. J.
576, pp. 2177-2200, July-August, 1978.

6. H. Lycklama, ‘UNIX on a Microprocessor,’ Bell Sys. Tech. J.,57 6, pp. 2087-2101. July-August
1978.

7. B. W. Kernighan and D. M. Ritchie,The C Programming Language,Prentice-Hall, Englewood
Cliffs, New Jersey, 1978. Second edition, 1988.

8. Aleph-null, ‘Computer Recreations,’ Software Practice and Experience,1 2, April-June 1971, pp.
201-204.

9. S. R. Bourne, ‘The UNIX Shell,’ Bell Sys. Tech. J.576, pp. 1971-1990, July-August 1978.

10. L. P. Deutsch and B. W. Lampson, ‘SDS 930 time-sharing system preliminary reference manual,’
Doc. 30.10.10, Project GENIE, Univ. Cal. at Berkeley, April 1965.

- 15 -

11. R. J. Feiertag and E. I. Organick, ‘The Multics input-output system,’ Proc. Third Symposium on
Operating Systems Principles, October 18-20, 1971, pp. 35-41.

12. D. G. Bobrow, J. D. Burchfiel, D. L. Murphy, and R. S. Tomlinson, ‘TENEX, a Paged Time Sharing
System for the PDP-10,’ Comm. Assoc. Comp. Mach.,153, March 1972, pp. 135-143.

