On Containment of Conjunctive Queries with Arithmetic Comparisons

Foto Afrati1, Chen Li2, and Prasenjit Mitra3

1 National Technical University of Athens, 157 73 Athens, Greece
afрат@cs.ece.ntua.gr

2 Information and Computer Science, University of California, Irvine, CA 92697, U.S.A
chenli@ics.uci.edu

3 School of Information Sciences and Technology
The Pennsylvania State University, University Park, PA 16802, U.S.A
pmitra@ist.psu.edu

Abstract. We study the following problem: how to test if Q_2 is contained in Q_1, where Q_1 and Q_2 are conjunctive queries with arithmetic comparisons? This problem is fundamental in a large variety of database applications. Existing algorithms first normalize the queries, then test a logical implication using multiple containment mappings from Q_1 to Q_2. We are interested in cases where the containment can be tested more efficiently. This work aims to (a) reduce the problem complexity from Π^2_1-completeness to NP-completeness in these cases; (b) utilize the advantages of the homomorphism property (i.e., the containment test is based on a single containment mapping) in applications such as those of answering queries using views; and (c) observing that many real queries have the homomorphism property. The following are our results. (1) We show several cases where the normalization step is not needed, thus reducing the size of the queries and the number of containment mappings. (2) We develop an algorithm for checking various syntactic conditions on queries, under which the homomorphism property holds. (3) We further reduce the conditions of these classes using practical domain knowledge that is easily obtainable.

1 Introduction

The problem of testing query containment is as follows: how to test whether a query Q_2 is contained in a query Q_1, i.e., for any database D, is the set of answers to Q_2 a subset of the answers to Q_1? This problem arises in a large variety of database applications, such as query evaluation and optimization $[1]$, data warehousing $[2]$, and data integration using views $[3]$. For instance, an important problem in data integration is to decide how to answer a query using source views. Many existing algorithms are based on query containment $[4]$.

** Supported by NSF CAREER award No. IIS-0238586.
A class of queries of great significance is conjunctive queries (select-project-join queries and cartesian products). These queries are widely used in many database applications. Often, users need to pose queries with arithmetic comparisons (e.g., year > 2000, price \leq 5000). Thus testing for containment of conjunctive queries with arithmetic comparisons becomes very important. Several algorithms have been proposed for testing containment in this case (e.g., [5,6]). These algorithms first normalize the queries by replacing constants and shared variables, each with new unique variables and add arithmetic comparisons to equate those new variables to the original constants or shared variables. Then, they test the containment by checking a logical implication using \textit{multiple} containment mappings. (See Section 2 for detail.)

We study how to test containment of conjunctive queries with arithmetic comparisons. In particular, we focus on the following two problems: (1) In what cases is the normalization step not needed? (2) In what cases does the \textit{homomorphism property} hold, i.e., the containment test is based on a single containment mapping [6]?

We study these problems for three reasons. The first is the efficiency of this test procedure. Whereas the problem of containment of pure conjunctive queries is known to be \textsc{NP}-complete [7], the problem of containment of conjunctive queries with arithmetic comparisons is \textsc{P}^2-complete [6,8]. In the former case, the containment test is in \textsc{NP}, because it is based on the existence of a \textit{single} containment mapping, i.e., the homomorphism property holds. In the latter case, the test needs multiple containment mappings, which significantly increases the problem complexity. We find large classes of queries where the homomorphism property holds; thus we can reduce the problem complexity to \textsc{NP}. Although the savings on the normalization step does not put the problem in a different complexity class, it can still reduce the sizes of the queries and the number of containment mappings in the containment test.

The second reason is that the homomorphism property can simplify many problems such as that of answering queries using views [9], in which we want to construct a plan using views to compute the answer to a query. It is shown in [10] that if both the query and the views are conjunctive queries with arithmetic comparisons, and the homomorphism property does not hold, then a plan can be recursive. Hence, if we know the homomorphism property holds by analyzing the query and the views, we can develop efficient algorithms for constructing a plan using the views.

The third motivation is that, in studying realistic queries (e.g., in TPC benchmarks), we found it hard to construct examples that need multiple mappings in the containment test. We observed that most real query pairs only need a single containment mapping to test the containment. To easily detect such cases, we want to derive syntactic conditions on queries, under which the homomorphism property holds. These syntactic conditions should be easily checked in polynomial time. In this paper, we develop such conditions.

The following are our contributions of this work. (Table 1 is a summary of results.)
<table>
<thead>
<tr>
<th>Contained Query</th>
<th>Containing Query</th>
<th>Complexity</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>CQ</td>
<td>CQ</td>
<td>NP</td>
<td>[7]</td>
</tr>
<tr>
<td>CQ with closed LSI</td>
<td>CQ with closed LSI</td>
<td>NP</td>
<td>[5, 6]</td>
</tr>
<tr>
<td>CQ with open LSI</td>
<td>CQ with open LSI</td>
<td>NP</td>
<td>[5, 6]</td>
</tr>
<tr>
<td>CQ with AC</td>
<td>CQ with LSI</td>
<td>NP</td>
<td>Section 4</td>
</tr>
<tr>
<td>Constraints</td>
<td>(i)-lsi, (ii)-lsi, (iii)-lsi</td>
<td>NP</td>
<td>Section 4</td>
</tr>
<tr>
<td>CQ with SI</td>
<td>CQ with LSI, RSI</td>
<td>NP</td>
<td>Section 4</td>
</tr>
<tr>
<td>Constraints</td>
<td>(i)-lsi,rsi, (ii)-lsi,rsi, (iii)-lsi,rsi, (iv)</td>
<td>NP</td>
<td>Section 4</td>
</tr>
<tr>
<td>CQ with SI</td>
<td>CQ with LSI, RSI, FI</td>
<td>NP</td>
<td>Section 4</td>
</tr>
<tr>
<td>Constraints</td>
<td>as above and (v), (vi),(vii)</td>
<td>NP</td>
<td>Theorem 6</td>
</tr>
<tr>
<td>CQ with AC</td>
<td>CQ with AC</td>
<td>Π₂⁻¹</td>
<td>[8]</td>
</tr>
</tbody>
</table>

Table 1. Results on containment test. The classes in NP have the homomorphism property. (See Table 2 for symbol definitions.)

1. We show cases where the normalization step is not needed (Section 3).
2. When the containing query \(Q_1 \) has only arithmetic comparisons between a variable and a constant (called “semi-interval,” or “SI” for short), we present cases where the homomorphism property holds (Section 4). If the homomorphism property does not hold, then some “heavy” constraints must be satisfied. Such a constraint could be: An ordinary subgoal of \(Q_1 \), an ordinary subgoal of \(Q_2 \), an open-left-semi-interval subgoal of \(Q_2 \), and a closed-left-semi-interval subgoal of \(Q_2 \) all use the same constant. (See Table 1 for the definitions of these terms.) Notice that these conditions are just syntactic constraints, and can be checked in time polynomial on the size of the queries.
3. We further relax the conditions of the homomorphism property using practical domain knowledge that is easily obtainable (Section 5).

1.1 Related Work

For conjunctive queries, restricted classes of queries are known for which the containment problem is polynomial. For instance, if every database predicate occurs in the contained query at most twice, then the problem can be solved in linear time [11], whereas it remains NP-complete if every database predicate occurs at least three times in the body of the contained query. If the containing query is acyclic, i.e., the predicate hypergraph has a certain property, then the containment problem is polynomial [12].

Klug [6] has shown that containment for conjunctive queries with comparison predicates is in \(\Pi_2 \), and it is proven to be \(\Pi_2 \)-hard in [8]. The reduction only used \(\neq \). This result is extended in [13] to use only \(\neq \) and at most three occurrences of the same predicate name in the contained query. The same reduction shows that it remains \(\Pi_2 \)-complete even in the case where the containing query is acyclic, thus the results in [12] do not extend to conjunctive queries with \(\neq \). The complexity is reduced to co-NP in [13] if every database predicate occurs at most twice in the body of the contained query and only \(\neq \) is allowed.
The most relevant to our setting is the work in [5,6]. It is shown that if only left or right semi-interval comparisons are used, the containment problem is in NP. It is stated as an open problem to search for other classes of conjunctive queries with arithmetic comparisons for which containment is in NP. Furthermore, query containment has been studied also for recursive queries. For instance, containment of a conjunctive query in a datalog query is shown to be EXPTIME-complete [14,15]. Containment among recursive and nonrecursive datalog queries is also studied in [16,17].

In [10] we studied the problem of how to answer a query using views if both the query and views are conjunctive queries with arithmetic comparisons. Besides showing the necessity of using recursive plans if the homomorphism property does not hold, we also developed an algorithm in the case where the property holds. Thus the results in [10] are an application of the contributions of this paper. Clearly testing query containment efficiently is a critical problem in many data applications as well.

2 Preliminaries

In this section, we review the definitions of query containment, containment mappings, and related results in the literature. We also define the homomorphism property.

Definition 1. (Query containment) A query Q_2 is contained in a query Q_1, denoted $Q_2 \subseteq Q_1$, if for any database D, the set of answers to Q_2 is a subset of the answers to Q_1. The two queries are equivalent, denoted $Q_1 \equiv Q_2$, if $Q_1 \subseteq Q_2$ and $Q_2 \subseteq Q_1$.

A conjunctive query is of the form:

$h(\overline{X}) := g_1(\overline{X}_1), \ldots, g_k(\overline{X}_k)$. In each subgoal $g_i(\overline{X}_i)$, predicate g_i is a base relation, and every predicate argument \overline{X}_i is either a variable or a constant. Chandra and Merlin [7] showed that for two conjunctive queries Q_1 and Q_2, $Q_2 \subseteq Q_1$ if and only if there is a containment mapping from Q_1 to Q_2, such that the mapping maps a constant to the same constant, and maps a variable to either a variable or a constant. Under this mapping, the head of Q_1 becomes the head of Q_2, and each subgoal of Q_1 becomes some subgoal in Q_2.

Let Q be a conjunctive query with arithmetic comparisons (CQAC). We consider the following arithmetic comparisons: $<, \leq, >, \geq, \not=$. We assume that database instances are over densely totally ordered domains. In addition, without loss of generality, throughout the paper we make the following assumptions about the comparisons. (1) The comparisons are not contradictory, i.e., there exists an instantiation of the variables such that all the comparisons are true. (2) All the comparisons are safe, i.e., each variable in the comparisons appears in some ordinary subgoal. (3) The comparisons do not imply equalities. If they imply an equality $X = Y$, we rewrite the query by substituting X for Y.

We denote $core(Q)$ as the set of ordinary (uninterpreted) subgoals of Q that do not have comparisons, and denote $AC(Q)$ as the set of subgoals that are
arithmetic comparisons in Q. We use the term \textit{closure} of a set of arithmetic comparisons S, to represent the set of all possible arithmetic comparisons that can be logically derived from S. For example, for the set of arithmetic comparisons $S = \{X \leq Y, Y = c\}$, we have $\text{Closure}(S) = \{X \leq Y, Y = c, X \leq c\}$. In addition, for convenience, we will denote Q_0 as the corresponding conjunctive query whose head is the head of Q, and whose body is $\text{core}(Q)$. See Table 2 for a complete list of definitions and notations on special cases of arithmetic comparisons such as semi-interval, point inequalities, and others.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CQ</td>
<td>Conjunctive Query</td>
</tr>
<tr>
<td>AC</td>
<td>Arithmetic Comparison</td>
</tr>
<tr>
<td>CQAC</td>
<td>Conjunctive Query with ACs</td>
</tr>
<tr>
<td>$\text{core}(Q)$</td>
<td>Set of ordinary subgoals of query Q</td>
</tr>
<tr>
<td>$\text{AC}(Q)$</td>
<td>Set of arithmetic-comparison subgoals of query Q</td>
</tr>
<tr>
<td>SI</td>
<td>Semi-interval: $X \theta c, \theta \in {<, \leq, >, \geq}$</td>
</tr>
<tr>
<td>LSI</td>
<td>Left-semi-interval: $X \theta c, \theta \in {<, \leq}$</td>
</tr>
<tr>
<td>closed-LSI</td>
<td>$X \leq c$</td>
</tr>
<tr>
<td>open-LSI</td>
<td>$X < c$</td>
</tr>
<tr>
<td>PI</td>
<td>Point Inequalities ($X \neq c$)</td>
</tr>
<tr>
<td>SI-PI</td>
<td>Some subgoals are SI, and some are PI</td>
</tr>
</tbody>
</table>

Table 2. Symbols used in the paper. X denotes a variable and c is a constant. The RSI cases are symmetrical to those of LSI.

2.1 Testing Containment

Let Q_1 and Q_2 be two conjunctive queries with arithmetic comparisons (CQACs). Throughout the paper, we study how to test whether $Q_2 \subseteq Q_1$. To do the testing, according to the results in \cite{[5,6]}, we first \textit{normalize} both queries Q_1 and Q_2 to Q'_1 and Q'_2 respectively as follows:

- For all occurrences of a shared variable X in the normal subgoals except the first occurrence, replace the occurrence of X by a new distinct variable X_i, and add $X = X_i$ to the AC's of the query; and
- For each constant c in the query, replace the constant by a new distinct variable Z, and add $Z = c$ to the AC's of the query.

The testing is illustrated in Figure 1. For simplicity, we denote $\beta_1 = AC(Q_1)$, $\beta_2 = AC(Q_2)$, $\beta'_1 = AC(Q'_1)$, and $\beta'_2 = AC(Q'_2)$. Let μ_1, \ldots, μ_k be all the containment mappings from $Q'_1, 0$ to $Q'_2, 0$. Let $\gamma_1, \ldots, \gamma_l$ be all the containment mappings from $Q_1, 0$ to $Q_2, 0$. There are a few important observations: (1) The number of ordinary subgoals in Q_1 (resp. Q_2) does not change after the normalization. Each subgoal G_i (resp. H_i) has changed to a new subgoal G'_i (resp.
Fig. 1. Containment testing ([5, 6]).

(2) While the comparisons C_1,\ldots,C_{n_1} (resp. D_1,\ldots,D_{n_2}) are kept after the normalization, we may have introduced new comparions C_{new} (resp. D_{new}) after the normalization. Note C_{new} and D_{new} contain only equalities. (3) There can be more containment mappings for the normalized queries than the original queries, i.e., $k \geq l$. The reason is that a containment mapping cannot map a constant to a variable, nor map different instances of the same variable to different variables. However, after normalizing the queries, their ordinary subgoals only have distinct variables, making any variable in Q'_1 mappable to any variable in Q'_2 (for the same position of the same predicate).

Theorem 1. $Q_2 \sqsubseteq Q_1$ if and only if the following logical implication ϕ is true:

$$\phi : \beta'_2 \Rightarrow \mu_1(\beta'_1) \lor \cdots \lor \mu_k(\beta'_1)$$

That is, the comparisons in the normalized query Q'_2 logically implies (denoted “\Rightarrow”) the disjunction of the images of the comparisons of the normalized query Q'_1 under these mappings [5, 6].

Example 1. These two queries show that the normalization step in Theorem 1 is critical [18].

$Q_1 : h(W) \vdash q(W), p(X, Y, Z, Z', U, U), X < Y, Z > Z'$.

$Q_2 : h(W) \vdash q(W), p(X, Y, 2, 1, U, U), p(1, 2, X, Y, U, U), p(1, 2, 1, X, Y)$.

There are two containment mappings from $Q_{1,0}$ to $Q_{2,0}$.

$$\delta_1 : W \rightarrow W, X \rightarrow X, Y \rightarrow Y, Z \rightarrow 2, Z' \rightarrow 1, U \rightarrow U.$$
$$\delta_2 : W \rightarrow W, X \rightarrow 1, Y \rightarrow 2, Z \rightarrow X, Z' \rightarrow Y, U \rightarrow U.$$

Notice we do not have a containment mapping from the p subgoal in Q_1 to the last p subgoal in Q_2, since we cannot map the two instances of variable U to both X and Y.

We can show $Q_2 \sqsubseteq Q_1$, but the following implication

$$TRUE \Rightarrow \delta_1(X < Y, Z > Z') \lor \delta_2(X < Y, Z > Z')$$
is not true, since it is possible $X = Y$. However, when $X = Y$, we would have a new “containment mapping” from Q_1 to Q_2:

$$\delta_3 : W \rightarrow W, X \rightarrow 1, Y \rightarrow 2, Z \rightarrow 2, Z' \rightarrow 1, U \rightarrow X = Y$$

After normalizing the two queries, we will have three (instead of two) containment mappings from the normalized query of Q_1 to that of Q_2.

Example 2. These two queries show that the \lor operation in the implication in Theorem 1 is critical.

$$Q_1 : \text{ans}() \triangleright p(X, 4), X < 4.$$
$$Q_2 : \text{ans}() \triangleright p(A, 4), p(3, A), A \leq 4.$$

Their normalized queries are:

$$Q'_1 : \text{ans}() \triangleright p(X, Y), X < 4, Y = 4.$$
$$Q'_2 : \text{ans}() \triangleright p(A, B), p(C, D), A \leq 4, B = 4, C = 3, A = D.$$

There are two containment mappings from $Q'_{1, 0}$ to $Q'_{2, 0}$: $\mu_1 : X \rightarrow A, Y \rightarrow B,$ and $\mu_2 : X \rightarrow C, Y \rightarrow D$. We can show that:

$$A \leq 4, B = 4, C = 3, A = D \Rightarrow \mu_1(X < 4, Y = 4) \lor \mu_2(X < 4, Y = 4)$$

Thus, $Q_2 \sqsubseteq Q_1$. Note both mappings are needed to prove the implication.

There are several challenges in using Theorem 1 to test whether $Q_2 \sqsubseteq Q_1$. (1) The queries look less intuitive after the normalization. The computational cost of testing the implication ϕ increases since we need to add more comparisons. (2) The implication needs the disjunction of the images of multiple containment mappings. In many cases it is desirable to have a single containment mapping to satisfy the implication. (3) There can be more containment mappings between the normalized queries than those between the original queries. In the rest of the paper we study how to deal with these challenges. In Section 3 we study in what cases we do not need to normalize the queries. That is, even if Q_1 and Q_2 are not normalized, we still have $Q_2 \sqsubseteq Q_1$ if and only if $\beta_2 \Rightarrow \gamma_1(\beta_1) \lor \ldots \lor \gamma_1(\beta_1)$.

2.2 Homomorphism Property

Definition 2. *(Homomorphism property)* Let Q_1, Q_2 be two classes of queries. We say that containment testing on the pair (Q_1, Q_2) has the homomorphism property if for any pair of queries (Q_1, Q_2) with $Q_1 \in Q_1$ and $Q_2 \in Q_2$, the following holds: $Q_2 \sqsubseteq Q_1$ iff there is a homomorphism μ from core(Q_1) to core(Q_2) such that $AC(Q_2) \Rightarrow \mu(AC(Q_1))$. If $Q_1 = Q_2 = Q$, then we say containment testing has the homomorphism property for class Q.

Although the property is defined for two classes of queries, in the rest of the paper we refer to the homomorphism property holding for two queries when the two classes contain only one query each. The containment test of Theorem 1 for
general CQACs considers normalized queries. However, in 3, we show that the cases where a single mapping suffices to show containment between normalized queries, it also suffices to show containment between these queries when they are not in normalized form and vice versa. Hence, whenever the homomorphism property holds, we need not distinguish between normalized queries and non-normalized ones.

In cases where the homomorphism property holds, we have the following non-deterministically polynomial algorithm that checks if $Q_2 \subseteq Q_1$. Guess a mapping μ from $core(Q_1)$ to $core(Q_2)$ and check whether μ is a containment mapping with respect to the AC subgoals too (the latter meaning that an AC subgoal g maps on an AC subgoal g' so that $g' \Rightarrow g$ holds). Note that the number of mappings is exponential on the size of the queries.

Klug [6] has shown that for the class of conjunctive queries with only open-LSI (open-RSI respectively) comparisons, the homomorphism property holds. In this paper, we find more cases where the homomorphism property holds. Actually, we consider pairs of classes of queries such as (LSI-CQ, CQAC) and we look for constraints which, if satisfied, the homomorphism property holds.

Definition 3. *(Homomorphism property under constraints)* Let Q_1, Q_2 be two classes of queries and C be a set of constraints. We say that containment testing on the pair (Q_1, Q_2) w.r.t. the constraints in C has the homomorphism property if for any pair of queries (Q_1, Q_2) with $Q_1 \in Q_1$ and $Q_2 \in Q_2$ and for which the constraints in C are satisfied, the following holds: $Q_2 \subseteq Q_1$ iff there is a homomorphism μ from $core(Q_1)$ to $core(Q_2)$ such that $AC(Q_2) \Rightarrow \mu(AC(Q_2)).$

The constraints we use are given as syntactic conditions that relate subgoals, in both queries. The satisfaction of the constraints can be checked in polynomial time in the size of the queries. When the homomorphism property holds, then the query containment problem is in NP.

3 Containment of Non-normalized Queries

To test the containment of two queries Q_1 and Q_2, using the result in Theorem 1, we need to normalize them first. Introducing more comparisons to the queries in the normalization can make the implication test computationally more expensive. Thus, we want to have a containment result that does not require the queries to be normalized. In this section, we present two cases, in which even if Q_1 and Q_2 are not normalized, we still have $Q_2 \subseteq Q_1$ if and only if $\beta_2 \Rightarrow \gamma_1(\beta_1) \vee \ldots \vee \gamma_l(\beta_1)$.

Case 1: The following theorem says that Theorem 1 is still true even for non-normalized queries Q_1, if two conditions are satisfied by the queries: (1) β_1 contains only \leq and \geq, and (2) β_1 (correspondingly β_2) do not imply equalities. In this case we can restrict the space of mappings because of the monotonicity property: For a query Q whose AC’s only include \leq, \geq, if a tuple t of a database D is an answer to Q, then on any database D' obtained from D, by identifying some elements, the corresponding tuple t' is in the answer to $Q(D')$. Due to space limitations, we give the proofs of all theorems in [19].
Theorem 2. Consider two CQAC queries Q_1 and Q_2 shown in Figure 1 that may not be normalized. Suppose β_1 contains only \leq and \geq, and β_1 (correspondingly β_2) do not imply “=” restrictions. Then $Q_2 \subseteq Q_1$ if and only if:

$$\beta_2 \Rightarrow \gamma_1(\beta_1) \lor \ldots \lor \gamma_l(\beta_1)$$

where $\gamma_1, \ldots, \gamma_l$ are all the containment mappings from $Q_{1,0}$ to $Q_{2,0}$.

Case 2: The following theorem shows that we do not need to normalize the queries if they have the homomorphism property.

Lemma 1. Assume the comparisons in Q_1 and Q_2 do not imply equalities. If there is a containment mapping μ from $Q_{1,0}$ to $Q_{2,0}$, such that $\beta'_2 \Rightarrow \mu(\beta'_1)$, then there must be a containment mapping γ from $Q_{1,0}$ to $Q_{2,0}$, such that $\beta_2 \Rightarrow \gamma(\beta_1)$.

Using the lemma above, we can prove:

Theorem 3. Suppose the comparisons in Q_1 and Q_2 do not imply equalities. The homomorphism property holds between Q_1 and Q_2 iff it holds between Q'_1 and Q'_2.

4 Conditions for Homomorphism Property

Now we look for constraints in the form of syntactic conditions on queries Q_1 and Q_2, under which the homomorphism property holds. The conditions are sufficiently tight in that, if at least one of them is violated, then there exist queries Q_1 and Q_2 for which the homomorphism property does not hold. The conditions are syntactic and can be checked in polynomial time. We consider the case where the containing query (denoted by Q_1 all through the section) is a conjunctive query with only arithmetic comparisons between a variable and a constant; i.e., all its comparisons are semi-interval (SI), which are in the forms of $X > c$, $X < c$, $X \geq c$, $X \leq c$, or $X \neq c$. We call $X \neq c$ a point inequality (PI).

This section is structured as follows. Section 4.1 discusses technicalities on the containment implication, and in particular in what cases we do not need a disjunction. In Section 4.2 we consider the case where the containing query has only left-semi-interval (LSI) subgoals. We give a main result in Theorem 4. In Section 4.3, we extend Theorem 4 by considering the general case, where the containing query may use any semi-interval subgoals and point inequality subgoals. In Section 4.4, we discuss the case for more general inequalities than SI. Section 4.5 gives an algorithm for checking whether these conditions are met. In [19], we include many examples to show that the conditions in the main theorems are tight.

4.1 Containment Implication

In this subsection, we will focus on the implication

$$\phi : \beta'_2 \Rightarrow \mu_1(\beta'_1) \lor \ldots \lor \mu_k(\beta'_1)$$
in Theorem 1. We shall give some terminology and some basic technical observations. The left-hand side (lhs) is a conjunction of arithmetic comparisons (in Example 2, the lhs is: \(A \leq 4 \land B = 4 \land C = 3 \land A = D \)). The right-hand side (rhs) is a disjunction and each disjunct is a conjunction of \(k \) arithmetic comparisons. For instance, in Example 2, the rhs is: \((A < 4 \lor B = 4) \lor (C < 4 \land D = 4)\), which has two disjuncts, and each is the conjunction of two comparisons. Given an integer \(i \), we shall call containment implication any implication of this form: a) the lhs is a conjunction of arithmetic comparisons, and b) the rhs is a disjunction and each disjunct is a conjunction of \(i \) arithmetic comparisons.

Observe that the rhs can be equivalently written as a conjunction of disjunctions (using the distributive law). Hence this implication is equivalent to a conjunction of implications, each implication keeping the same lhs as the original one, and the rhs is one of the conjuncts in the implication that results after applying the distributive law. We call each of these implications a partial containment implication.\(^4\) In Example 2, we write equivalently the rhs as: \((A < 4 \lor C < 4) \land (A < 4 \lor D = 4) \land (B = 4 \lor C < 4) \land (B = 4 \lor D = 4)\). Thus, the containment implication in Example 2 can be equivalently written as

\[
(A \leq 4, B = 4, C = 3, A = D \Rightarrow A < 4 \lor C < 4) \land
(A \leq 4, B = 4, C = 3, A = D \Rightarrow A < 4 \lor D = 4) \land
(A \leq 4, B = 4, C = 3, A = D \Rightarrow B = 4 \lor C < 4) \land
(A \leq 4, B = 4, C = 3, A = D \Rightarrow B = 4 \lor D = 4).
\]

Here we get four partial containment implications.

A partial containment implication \(\alpha \Rightarrow (\alpha_1 \lor \alpha_2 \lor \ldots \lor \alpha_k) \) is called a direct implication if there exists an \(i \), such that if this implication is true, then \(\alpha \Rightarrow \alpha_i \) is also true. Otherwise, it is called a coupling implication. For instance,

\[
(A \leq 4, B = 4, C = 3, A = D \Rightarrow B = 4 \lor D = 4)
\]

is a direct implication, since it is logically equivalent to \((A \leq 4, B = 4, C = 3, A = D \Rightarrow B = 4)\). On the contrary, \((A \leq 4, B = 4, C = 3, A = D \Rightarrow A < 4 \lor D = 4)\) is a coupling implication. The following lemma is used as a basis for many of our results.

Lemma 2. Consider a containment implication \(\alpha \Rightarrow (\alpha_1 \lor \alpha_2 \lor \ldots \lor \alpha_k) \) that is true, where each of the \(\alpha \) and \(\alpha_i \)'s is a conjunction of arithmetic comparisons. If all its partial containment implications are direct implications, then there exists a single disjunct \(\alpha_i \) in the rhs of the containment implication such that \(\alpha \Rightarrow \alpha_i \).

We give conditions to guarantee direct implications in containment test.

Corollary 1. Consider the normalized queries \(Q_1' \) and \(Q_2' \) in Theorem 1. Suppose all partial containment implications are direct. Then there is a mapping \(\mu_i \) from \(Q_{1,0} \) to \(Q_{2,0} \) such that \(\beta_2' \Rightarrow \mu_i(\beta_1') \).

\(^4\) Notice that containment implications and their partial containment implications are not necessarily related to mappings and query containment, only the names are borrowed.
4.2 Left Semi-interval Comparisons (LSI) for Q_1

We first consider the case where Q_1 is a conjunctive query with left semi-interval arithmetic comparison subgoals only (i.e., one of the form $X < c$ or $X \leq c$ or both may appear in the same query). The following theorem is a main result describing the conditions for the homomorphism property to hold in this case.

Theorem 4. Let Q_1 be a conjunctive query with left semi-interval (or right semi-interval) arithmetic comparisons and Q_2 a conjunctive query with any arithmetic comparisons.

Condition (i): If the arithmetic comparisons in Q_1 do not share a constant with the closure of the arithmetic comparisons in Q_2, then the homomorphism property holds.

4.3 Semi-Interval (SI) and Point-Inequalities (PI) Queries for Q_1

Now we extend the result of Theorem 4 to treat both LSI and RSI subgoals occurring in the same containing query. We further extend it to include point inequalities (of the form $X \neq c$). The result is the following.

SI Queries for Q_1: We consider the case where Q_1 has both LSI and RSI inequalities called “SI inequalities,” i.e., any of the $<, >, \leq, \geq$. In this case we need one more condition, namely Condition (iv), in order to avoid coupling implications. Thus Theorem 4 is extended to the following theorem, which is the second main result of this section.

Theorem 5. Let Q_1 be a conjunctive query with left semi-interval and right semi-interval arithmetic comparisons and Q_2 a conjunctive query with SI arithmetic comparisons. If they satisfy all the following conditions, then the homomorphism property holds:

- Condition (i) (in 4).
- Condition (ii): Any constant in an RSI subgoal of Q_1 is strictly greater than any constant in an LSI subgoal of Q_1.

PI Queries for Q_1: If the containing query Q_1 has point inequalities, three more forms of coupling implications can occur. Thus Theorem 5 is further extended to Theorem 6, which is the third main result of this section.

Theorem 6. Let Q_1 be a conjunctive query with left semi-interval and right semi-interval and point inequality arithmetic comparisons and Q_2 a conjunctive query with SI arithmetic comparisons. If Q_1 and Q_2 satisfy all the following conditions, then the homomorphism property holds:

- Conditions (i), and (ii)
- Condition (iii): Either Q_1 has no repeated variables, or it does not have point inequalities.
- Condition (iv): The maximum constant in the LSI subgoals of Q_1 (or RSI subgoal of Q_1) is less than or equal to (greater-than or equal to) the minimum constant in any Point-Inequality(Q_1).
- Condition (v): Point-Inequality(Q_1) does not have a constant that occurs in core(Q_1).
4.4 Beyond Semi-Interval Queries for Q_1

Our results have already captured subtle cases where the homomorphism property holds and there is not much hope beyond those cases (unless we restrict the number of subgoals of the contained query which is known in the literature—e.g., [13]). Couplings due to the implication:

$$\text{TRUE} \Rightarrow ((X \leq Y) \lor (Y \leq X))$$

indicates that if the containing query has closed comparisons, then the homomorphism does not hold. The following is such an example:

$$Q_1: \text{ans}() : p(X,Y), X \leq Y$$
$$Q_2: \text{ans}() : p(X,Y), p(Y,X)$$

Clearly Q_2 is contained in Q_1, but the homomorphism property does not hold.

4.5 A Testing Algorithm

We summarize the results in this section in an algorithm shown in Figure 2. Given two CQAC queries Q_1 and Q_2, the algorithm tests if the homomorphism property holds in checking $Q_2 \subseteq Q_1$. Queries may not satisfy these conditions but still the homomorphism property may hold. For instance, it could happen if they do not have self-joins, or if domain information yields that certain mappings are not possible (see Section 5). Hence, in the diagram, we can also put this additional check: Whenever one of the conditions is not met, we also check whether there are mappings that would enable a coupling implication. We did not include the formal results for this last test for brevity, as they are a direct consequence of the discussion in the present section.

5 Improvements Using Domain Information

So far we have discussed in what cases we do not need to normalize queries in the containment test, and in what cases we can reduce the containment test to checking the existence of a single homomorphism. If a query does not satisfy these conditions, the above results become inapplicable. For instance, often a query may have both $<$ and \geq comparisons, not satisfying the conditions in Theorem 2. In this section, we study how to relax these conditions by using domain knowledge of the relations and queries.

The intuition of our approach is the following. We partition relation attributes into different domains, such as “car models,” “years,” and “prices.” We can safely assume that for realistic queries, their conditions respect these domains. In particular, for a comparison $X \theta A$, where X is a variable, A is a variable or a constant, the domain of A should be the same as that of X. For example, it may be meaningless to have conditions such as “carYear = $6,000.” Therefore, in the implication of testing query containment, it is possible to partition the
Fig. 2. An algorithm for checking homomorphism property in testing $Q_2 \subseteq Q_1$.
implication into different domains. The domain information about the attributes is collected only once before queries are posed. For instance, given the following implication \(\phi: year > 2000 \land price \leq 5,000 \Rightarrow year > 1998 \land price \leq 6,000 \). We do not need to consider implication between constants or variables in different domains, such as between “1998” and “$6,000,” and between “year” and “price.” As a consequence, this implication can be projected to the following implications in two domains:

- **Year domain** \(\phi_y: \) \(year > 2000 \Rightarrow year > 1998 \).
- **Price domain** \(\phi_p: \) \(price \leq 5,000 \Rightarrow price \leq 6,000 \).

We can show that \(\phi \) is true iff both \(\phi_y \) and \(\phi_p \) are true. In this section, we first formalize this domain idea, and then show how to partition an implication into implications of different domains.

5.1 Domains of Relation Attributes and Query Arguments

Assume each attribute \(A_i \) in a relation \(R(A_1, \ldots, A_k) \) has a domain \(\text{Dom}(R.A_i) \). Consider two tables: \text{house}(\text{seller, street, city, price}) \) and \text{crimerate(city, rate)}. Relation \text{house} \) has housing information, and relation \text{crimerate} \) has information about crime rates of cities. The following table shows the domains of different attributes in these relations. Notice that attributes \text{house.city} \) and \text{crimerate.city} share the same domain: \(D_3 = \{ \text{city names} \} \).

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>house.seller</td>
<td>(D_1 = { \text{person names} })</td>
</tr>
<tr>
<td>house.street</td>
<td>(D_2 = { \text{street names} })</td>
</tr>
<tr>
<td>house.city</td>
<td>(D_3 = { \text{city names} })</td>
</tr>
<tr>
<td>house.price</td>
<td>(D_4 = { \text{float numbers in dollars} })</td>
</tr>
<tr>
<td>crimerate.city</td>
<td>(D_3 = { \text{city names} })</td>
</tr>
<tr>
<td>crimerate.rate</td>
<td>(D_5 = { \text{crime-rate float numbers} })</td>
</tr>
</tbody>
</table>

We equate domains of variables and constants using the following rules:

- For each argument \(X_i \) (either a variable or a constant) in a subgoal \(R(X_1, \ldots, X_k) \) in query \(Q \), the domain of \(X_i \), \(\text{Dom}(X_i) \), is the corresponding domain of the \(j \)-th attribute in relation \(R \).
- For each comparison \(X \theta c \) between variable \(X \) and constant \(c \), we set \(\text{Dom}(c) = \text{Dom}(X) \). Constants from different domains are always treated as different constants. For instance, in two conditions \(\text{carYear} = 2000 \) and \(\text{carPrice} = $2000 \), constants “2000” and “$2000” are different constants.

We perform this process on all subgoals and comparisons in the query. In this calculation we make the following realistic assumptions: (1) If \(X \) is a shared variable in two subgoals, then the corresponding attributes of the two arguments of \(X \) have the same domain. (2) If we have a comparison \(X \theta Y \), where \(X \) and \(Y \) are variables, then \(\text{Dom}(X) \) and \(\text{Dom}(Y) \) are always the same.

Consider the following queries on the relations above.
\(P_1: \text{ans}(t_1, c_1) \Rightarrow \text{house}(s_1, t_1, c_1, p_1), \text{crimerate}(c_1, r_1), p_1 \leq 300,000, r_1 \geq 3.0\%. \)
\(P_2: \text{ans}(t_2, c_2) \Rightarrow \text{house}(s_2, t_2, c_2, p_2), \text{crimerate}(c_2, r_2), p_2 \leq 250,000, r_2 \geq 3.5\%. \)

The computed domains of the variables and constants are shown in the table below. It is easy to see that the domain information as defined in this section can be obtained in polynomial time.

<table>
<thead>
<tr>
<th>(P_1: \text{Variable/constant})</th>
<th>(P_1: \text{Domain})</th>
<th>(P_2: \text{Variable/constant})</th>
<th>(P_2: \text{Domain})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_1)</td>
<td>(D_1)</td>
<td>(s_2)</td>
<td>(D_1)</td>
</tr>
<tr>
<td>(t_1)</td>
<td>(D_2)</td>
<td>(t_2)</td>
<td>(D_2)</td>
</tr>
<tr>
<td>(c_1)</td>
<td>(D_3)</td>
<td>(c_2)</td>
<td>(D_3)</td>
</tr>
<tr>
<td>(p_1)</td>
<td>(D_4)</td>
<td>(p_2)</td>
<td>(D_4)</td>
</tr>
<tr>
<td>(r_1)</td>
<td>(D_5)</td>
<td>(r_2)</td>
<td>(D_5)</td>
</tr>
<tr>
<td>(300,000)</td>
<td>(D_4)</td>
<td>(250,000)</td>
<td>(D_4)</td>
</tr>
<tr>
<td>(3.0%)</td>
<td>(D_5)</td>
<td>(3.5%)</td>
<td>(D_5)</td>
</tr>
</tbody>
</table>

5.2 Partitioning Implication into Domains

According to Theorem 1, to test the containment \(Q_1 \subseteq Q_2 \) for two given queries \(Q_1 \) and \(Q_2 \), we need to test the containment implication in the theorem. We want to partition this implication to implications in different domains, since testing the implication in each domain is easier. Now we show that this partitioning idea is feasible. We say a comparison \(X \theta A \) is in domain \(D \) if \(X \) and \(A \) are in domain \(D \). The following are two important observations.

- If a mapping \(\mu \) maps an argument \(X \) in query \(Q_1 \) to an argument \(Y \) in query \(Q_2 \), based on the calculation of argument domains, clearly \(X \) and \(Y \) are from the same domain.
- In query normalization, each new introduced variable has the same domain as the replaced argument (variable or constant).

Definition 4. Consider the following implication \(\phi \) in Theorem 1:

\[
\beta'_2 \Rightarrow \mu_1(\beta'_1) \vee \ldots \vee \mu_k(\beta'_1).
\]

For a domain \(D \) of the arguments in \(\phi \), the projection of \(\phi \) in \(D \), denoted \(\phi_D \), is the following implication:

\[
\beta'_2 \Rightarrow \mu_1(\beta'_1, D) \vee \ldots \vee \mu_k(\beta'_1, D).
\]

\(\beta'_2 \) includes all comparisons of \(\beta'_2 \) in domain \(D \). Similarly, \(\beta'_1 \) includes all comparisons of \(\beta'_1 \) in domain \(D \).

Suppose we want to test \(P_2 \subseteq P_1 \) for the two queries above. There is only one containment mapping from \(P_1 \) to \(P_2 \), and we need to test the implication:

\[
\pi : p_2 \leq 250,000, r_2 \geq 3.5\% \Rightarrow p_2 \leq 300,000, r_2 \geq 3.0\%.
\]

The projection of \(\pi \) on domain \(D_h \) (float numbers in dollars) \(\pi_{D_h} \) is \(p_2 \leq 250,000 \Rightarrow p_2 \leq 300,000 \). Similarly, \(\pi_{D_h} \) is \(r_2 \geq 3.5\% \Rightarrow r_2 \geq 3.0\%. \)
Theorem 7. Let D_1, \ldots, D_n be the domains of the arguments in the implication ϕ. Then ϕ is true iff all the projected implications $\phi_{D_1}, \ldots, \phi_{D_n}$ are true.

In the example above, by Theorem 7, π is true iff π_{D_1} and π_{D_2} are true. Since the latter two are true, π is true. Thus $P_2 \subseteq P_1$. In general, we can test the implication in Theorem 1 by testing the implications in different domains, which are much cheaper than the whole implication. [19] gives formal results that relax the conditions in the theorems of the previous section to apply only on elements of the same domain.

6 Conclusion

In this paper we considered the problem of testing containment between two conjunctive queries with arithmetic comparisons. We showed in what cases the normalization step in the algorithm [5, 6] is not needed. We found various syntactic conditions on queries, under which we can reduce considerably the number of mappings needed to test containment to a single mapping (homomorphism property). These syntactic conditions can be easily checked in polynomial time. Our experiments using real queries showed that many of these queries pass this test, so they do have the homomorphism property, making it possible to use more efficient algorithms for the test.

7 Appendix

7.1 Proof of Theorem 4

The proof of Theorem 4 is based on two observations on the containment implication of Theorem 1: (a) If a coupling partial containment implication occurs, then one of the three conditions is shown to be dissatisfied. Consequently if the conditions are satisfied then we get only direct partial containment implications. (b) If we have only direct partial containment implications, then the homomorphism property holds. We settle (a) as follows: Lemma 4 proves that only three forms of coupling partial containment implications may occur. We observe that if the conditions (i)–(iii) of Theorem 4 are satisfied, then the partial containment implications cannot have any of these three forms. Consequently, if the conditions of Theorem 4 hold, there are only direct partial containment implications.

Lemma 3. Suppose we have an implication among arithmetic comparisons where the rhs is a conjunction of inequalities and the lhs is a disjunction of equalities and left semi-interval inequalities. Suppose that both lhs and rhs are minimal, i.e., if you delete any inequality then the implication is not true. Then at least one of the following:
(i) \((X \leq c) \Rightarrow ((X < c) \lor (X = c))\)

(ii) \(((X \leq c) \land (Y = c)) \Rightarrow ((X < c) \lor (X = Y))\)

(iii) \((X \leq c) \land (Y \leq c) \Rightarrow (X < c) \lor (Y < c) \lor (X = Y)\)

(iv) \((X \leq c) \land (Y \leq c) \land (X \neq Y) \Rightarrow (X < c) \lor (Y < c)\)

(v) \((X < Y_1) \land (Y_2 < c) \land (Y_1 < c_1) \land (Y_2 < c_1) \Rightarrow (X < c) \lor (Y_1 < c_1) \lor (Y_2 < c_1)\)

(vi) \((X < Y_1) \land (Y_2 < Z) \land (Y_1 < c_1) \land (Y_2 < c_1) \land (Z \leq c) \Rightarrow (X < c) \lor (Y_1 < c_1) \lor (Z < c)\)

(vii) \((X \leq Y) \land (Y \leq c) \land (X \neq Y) \Rightarrow (X < c) \lor (Y < c)\)

Proof: We also use and refer to the eight axioms in Ullman’s book. Here they are:

A1: \(X \leq X\)
A2: \((X < Y) \) implies \((X \leq Y)\)
A3: \((X < Y) \) implies \((X \neq Y)\)
A4: \((X \leq Y) \) and \((X \neq Y) \) implies \((X < Y)\)
A5: \((Y \neq X) \) implies \((X \neq Y)\)
A6: \((X < Y) \) and \((Y < Z) \) implies \((X < Z)\)
A7: \((X \leq Y) \) and \((Y \leq Z) \) implies \((X \leq Z)\)
A8: \((X \leq Z) \) and \((Z \leq Y) \) and \((X \leq W) \) and \((W \leq Y) \) and \((W \neq Z) \) implies \((X \neq Y)\)

We also need to be careful about how we apply those axioms because they assume \(X \leq c\) that there are no equalities and \(Y \leq c\) that is the possibility that \(X \geq Y\) and \(Y \geq X\).

Suppose we have the setting of Ullman and suppose that in the rhs there are only LSI inequalities. First it is an easy observation that in the rhs, each variable appears only once (otherwise the rhs is not minimal because we can replace all occurrences by \(X \theta c\) where \(c\) is the larger among the constants that are related to \(X\) by an LSI inequality on the rhs and \(\theta\) is either \(<\) or \(\leq\) depending on how \(c\) was related to \(X\)).

Now we have two cases: (i) there is a CLSI on the rhs, (ii) there are only OLSI in the rhs.

In case (i), we may rewrite the implication by moving everything except the CLSI (say it is \(X \leq c\)) from the rhs to the in the lhs (in which case each disjunct will become a conjunct and it will be either a CRSI or an ORSI). Now we may use the axioms to deduce the rhs \(X \leq c\) of the new implication. Before we use them however we need to check whether some variables are now equated to other variables or constants (because of the assumption we have on the applicability of the axioms). Only CRSI can produce such equations, in which case the only possibility is that some variables are equated to constants. We can easily argue that this can be done in only one deduction step on the closure of the original lhs of the implication.

The useful axioms are A2 and A7. For axiom A2, the only useful possibility is that \(Y\) is equated to \(c\). For this to happen however we should have had on the closure of the old lhs a conjunct \(Y \leq c\) and hence we would also have a conjunct \(X < c\). Therefore the disjunct \(X \leq c\) on the rhs can be implied directly and
the rhs was not minimal. For axiom A7, the only useful possibility is that \(Z \) is equated to \(c \). In this case a similar argument applies.

For case (ii), we again do the same rewriting constructing a new implication with only one OLSI, say \(X < c \) on the rhs. Now axioms A4 and A6 can be used. For A6, we may have either of the following three a) that \(Y = Y_1 \) and \(Y_2 \) in the original lhs and now they are equated because we had \(Y_1 \leq c_1 \) and \(Y_2 \leq c_1 \) and now we have moved to the lhs \(Y_1 \geq c_1 \) and \(Y_2 \geq c_1 \) – this obtains (v) in the statement of the lemma or b) \(Z \) is equated to \(c \) but this could produce the \(X < c \) in the original implication, hence the rhs was not minimal, or c) both – this obtains (vi) in the statement of the lemma.

For A4, the new possibility that could be created by moving inequalities from the rhs to the lhs is the following: There was in the lhs the conjunct \(X \leq c \) and the conjunct \(X \neq Y \); now (because of the new inequalities being moved from the rhs), we have \(Y = c \). Hence we deduce \(X < c \) notice that now we used the new lhs inequality \(Y \geq c \). Some more cases in the statement of the lemma will come up with this one.

Lemma 4. Consider a partial containment implication with rhs a disjunction of comparisons of either of the following forms \(X \leq c, X < c, X = c, X = Y \). Suppose the rhs is minimal with respect to the satisfaction of the implication, i.e., if we delete any of the disjuncts, the implication is not satisfied. Then either the rhs has exactly one AC (i.e., it is a direct implication) or the implication is one of the following three cases (up to renaming of variables and constants and up to adding any number of additional conjuncts in the lhs):

\[
\begin{align*}
\text{(i)} & \quad (X \leq c) \Rightarrow ((X < c) \lor (X = c)) \\
\text{(ii)} & \quad ((X \leq c) \land (Y = c)) \Rightarrow ((X < c) \lor (X = Y)) \\
\text{(iii)} & \quad (X \leq c) \land (Y \leq c) \Rightarrow (X < c) \lor (Y < c) \\
& \quad \lor (X = Y)
\end{align*}
\]

Now using the above lemma, it is not hard to prove that the conditions (i), (ii), and (iii) of Theorem 4 do not allow coupling implications to happen. Finally, the proof of Theorem 4 is a direct consequence of the above results and of Corollary 1 and Theorem 3.

7.2 Examples Demonstrating Coupling Implications

Here we mainly provide examples to argue that the conditions stated in Section 4.2 are tight.

LSI or RSI Queries We show an example of single-variable coupling that occurs due to the implication:

\[
(X \leq c) \Rightarrow ((X < c) \lor (X = c))
\]

Example 3. The following is an example:
\[Q_1 : \text{ans}() \vdash p(X, 4), X < 4\]
\[Q_2 : \text{ans}() \vdash p(A, 4), p(3, A), A \leq 4\]

Correspondingly we have the normalized queries:
\[Q'_1 : \text{ans}() \vdash p(X, Y), X < 4, Y = 4\]
\[Q'_2 : \text{ans}() \vdash p(X, Y), p(Z, U), X \leq 4, Y = 4, Z = 3, U = X\]

There are two containment mappings from core(\(Q'_1\)) to core(\(Q'_2\)): \(\mu_1(X) = X\), \(\mu_1(Y) = Y\), and \(\mu_2(X) = Z, \mu_2(Y) = U\). \(Q'_2\) is contained in \(Q'_1\) because of the implication
\[
((X \leq 4) \land (Y = 4) \land (Z = 3) \land (U = X)) \Rightarrow
\\((((X < 4) \land (Y = 4)) \lor ((Z = 3) \land (U = X)))
\]

We now show an example of multi-variable coupling that occurs due to the implication:
\[(X \leq c \land Y = c) \Rightarrow (X < c \lor X = Y)\]

Example 4. This example shows that there is no single mapping due to a coupling.
\[Q_1 : \text{ans}() \vdash p(A, B, B), A < 4\]
\[Q_2 : \text{ans}() \vdash p(X, Y, Y), p(U, X, 4), X \leq 4, U < 4\]

After normalizing the queries we have:
\[Q'_1 : \text{ans}() \vdash p(A, B, C), A < 4, B = C\]
\[Q'_2 : \text{ans}() \vdash p(X, Y, W), p(U, Y, Z), X \leq 4, Z = 4, U < 4, Y = W, V = X\]

There are two mappings: \(\mu_1(A) = X, \mu_1(B) = Y, \mu_1(C) = W\), and \(\mu_2(A) = U, \mu_2(B) = V, \mu_2(C) = Z\). \(Q'_1\) contains \(Q'_2\) because the implication
\[
((X \leq 4) \land (Z = 4) \land (U < 4) \land (Y = W) \land (V = X)) \Rightarrow
\\(((X < 4) \land (Y = W)) \lor ((U < 4) \land (V = Z)))
\]
holds.

In this type of coupling, we note that we require shared variables in the containing query and the same constant in the comparisons of the two queries as well as the core of the contained query. Note that \(Y = 4\) comes from the process of normalization, and 4 appears in the core of the contained query. To avoid this form of coupling, the condition (i) is sufficient.

We show another example of multi-variable coupling that occurs due to an implication of the form:
\[(X \leq c) \land (Y \leq c) \Rightarrow (X < c) \lor (Y < c) \lor (X = Y)\]

Example 5. This example shows there is no single mapping due to coupling:
\[Q_1 : \text{ans}() \vdash p(A, B, B), A < 4\]
\[Q_2 : \text{ans}() \vdash p(X, U, U), p(Y, V, V), p(Z, X, Y), X \leq 4, Z < 4, Y \leq 4\]

In this example, after normalizing the queries, we have three mappings that are used to prove containment.
The SI-PI Case We first discuss the case where the containing query uses only LSI or RSI or both and then we discuss the case where it may use also point inequalities.

SI case Condition (ii) avoids the following coupling implication:

\[\text{TRUE} \Rightarrow ((X \theta_1 c_1) \lor (X \theta_2 c_2)) \]

where \(\theta_1 \) is \(<\) or \(\leq\), \(\theta_2 \) is \(>\) or \(\geq\), and \(c_2 \leq c_1 \). For example, \(\text{TRUE} \Rightarrow ((X < 5) \lor (X > 3)) \).

Example 6. The following is such an example.

\[\begin{align*}
Q_1 : \text{ans()} & : p(X, Y), X < 5, Y > 3 \\
Q_2 : \text{ans()} & : p(X, Y), p(Y, Z), X < 5, Z > 3
\end{align*} \]

\(Q_2 \) is contained in \(Q_1 \) and two containment mappings are necessary to prove the containment. The coupling implication to prove the containment is of the same form (iv).

A similar coupling implication is as follows:

\[\text{TRUE} \Rightarrow ((X > c) \lor (X < c) \lor X = c) \]

SI-PI case Condition (iii) avoids the following coupling implication:

\[\text{TRUE} \Rightarrow (X \neq c) \lor (X = Y) \lor (Y \neq c) \]

For instance, consider the following queries.

\[\begin{align*}
Q_1 : \text{ans()} & : p(X, Y, Y), X \neq 5 \\
Q_2 : \text{ans()} & : p(X, A, A), p(Y, B, B), p(C, X, Y)
\end{align*} \]

Condition (v) avoids the following coupling implication:

\[\text{TRUE} \Rightarrow ((X = c) \lor (X \neq c)) \]

For instance, consider the following queries.

\[\begin{align*}
Q_1 : \text{ans()} & : p(X, Y), X = 5, Y \neq 5 \\
Q_2 : \text{ans()} & : p(X, A), p(B, X), A \neq 5, B = 5
\end{align*} \]

Condition (iv) avoids the following coupling implication:

\[\text{TRUE} \Rightarrow (X \leq c) \lor (X \neq c) \]

For instance, consider the following queries:

\[\begin{align*}
Q_1 : \text{ans()} & : p(X, Y), X \leq 5, Y \neq 5 \\
Q_2 : \text{ans()} & : p(X, A), p(A, X)
\end{align*} \]
Condition (iv) also avoids the following coupling implication:

$$TRUE \Rightarrow (X < c1) \lor (X \neq c2)$$

where $c1 \neq c2$. For example, consider the following queries:

$$Q_1 : ans() \leftarrow p(X, Y), X < 3, Y \neq 2$$
$$Q_2 : ans() \leftarrow p(A, Y), p(Z, A), Y = 1, Z = 0$$

This case is similar to the general SI case because $(X \neq 2)$ can be rewritten as $(X < 2) \lor (X > 2)$ and the latter couples with $(X < 3)$.

Note that for each example above a) there is no single mapping that proves containment, and b) all conditions except one are satisfied. This implies that none of the conditions are redundant.

Beyond Semi-Interval Queries—continue Additional couplings can occur due to the following implication:

$$TRUE \Rightarrow ((X < Y) \lor (Y < X) \lor (X = Y))$$

indicates that if the containing queries have open comparisons with shared variables, then the homomorphism property does not hold. The following is such an example. Consider the two queries:

$$Q_1 : ans() \leftarrow p(X, Y, Z, Z), X < Y$$
$$Q_2 : ans() \leftarrow p(X, Y, A, A), p(Y, X, B, B), p(C, D, X, Y), C < D$$

Again, Q_2 is contained in Q_1, but the homomorphism property does not hold.

Even without shared variables, the following implication shows a possible coupling:

$$(Y > c') \land (c' \geq c) \Rightarrow ((X > c) \lor (X < Y))$$

The following is such an example.

$$Q_1 : ans() \leftarrow p(A, B, C), A > 3, B < C$$
$$Q_2 : ans() \leftarrow p(X, A, B), p(D, X, Y), Y > 4, A < B, D > 3$$

Here, Q_2 is contained in Q_1, but the homomorphism property does not hold.

References