Compiler Optimizations
for Performance

Wel Li



Example I: Computer Games

m Pocket Quake® |l - Compiler Benchmark
The demo compares two compiled versions of the same

benchmark. The better optimized version provides about 2X
performance boost on Pocket Quake |I.

Click object
in Powerpoint 0% 25% 50% T5% 100% 0% 25% 50% T5% 100%
presentation

mode to start film

Less optimizations More optimizations

Stanford University CS243 Winter 2006



Example ll: Weather Forecast

Adding OpenMP,
Itanium® 2 4 CPUs

10x

Weather forecast application
Compiler directives,J
minor source change
/O3 — Enable Itanium® 2 4 CPU
advanced optimizations 4X
Legacy system Itanium® 2 4 CPU
8 CPUs Compiler
2.5X
Original source,
default options, )
Itanium® 2 4 CPU Compiler
1x 1.2x Compiler
- ‘ Compiler

Optimizations may improve performance significantly.

Stanford University CS243 Winter 2006



Compiler Features (example)

m O2: scalar optimizations and basic
scheduling

m O3: optimizations for technical
computing applications (loopy codes)

m O1: optimizations for server applications
(straight-line and branchy codes with flat
profile)

Stanford University CS243 Winter 2006



Compiler Features (example)

m PGO (profile-guided optimizations): using
profile to guide optimizations.

m |PO (inter-procedural optimizations): multi-file
inlining, interprocedural optimizations.

m Parallel: automatic parallelization
m OpenMP: exploiting thread-Level parallelism

m Optimization report: compiler optimizations
performed or not done

Stanford University CS243 Winter 2006



Compiler Organization (example)

Ct- FORTRAN
Front End Front End

Profiler

Interprocedural analysis and optimizations: inlining,
constant prop, whole program detect, mod/ref, points-to

Loop optimizations: data deps, prefetch, vectorizer,

: ) ) Disambiguation:
unroll/interchange/fusion/dist, auto-parallel/OpenMP

types, array,
pointer, structure,
directives

Global scalar optimizations: partial redundancy elim,
dead store elim, strength reduction, dead code elim

Code generation: predication, software pipelining,
global scheduling, register allocation, code emit

Stanford University CS243 Winter 2006
6



Example: Software Pipelining

L1:1d4 r4 =1[r5],4; /| O
addr7 =r4,r9; /| 2

st4 [r6]=r7,4 /| 3
br.cloop L1;;

4 cycles per iteration

Stanford University CS243 Winter 2006



Example: Software Pipelining

 Exploit parallelism across loop iterations.

L1:1d4 r4 =[r5],4; // O

addr7 =r4,r9; /| 2
st4 [r6]=r7,4 /| 3
br.cloop L1;;

4 cycles per iteration

Stanford University

CS243 Winter 2006



Example: Software Pipelining

 Exploit parallelism across loop iterations.

L1:1d4 r4 =[r5],4; // O

addr7 =r4,r9; /| 2
st4 [r6]=r7,4 /| 3
br.cloop L1;;

4 cycles per iteration

L1:
(p16) 1d4 r32 =1[r5], 4 // cycle O

(p18) add r35 =r34,r9 /I cycle O
(p19) st4 [r6] =136, 4 /I cycle O
br.ctop L1;; I/l cycle 0

1 cycle per iteration (with architecture support)

Stanford University CS243 Winter 2006



Course Emphasis

s Compiler foundation
= [heoretical frameworks
= Algorithms

= Experimentation
= Hands-on experience

= Non-goal: how to build a complete optimizing
compiler

m Exposure to real world impact
= How they worked in practice

Stanford University CS243 Winter 2006

10



