
Wei Li 1
Stanford University

CS243 Winter 2006

Control Dependence Control Dependence

2CS243 Winter 2006
Stanford University

Control DependenceControl Dependence

IntroductionIntroduction
Formal DefinitionFormal Definition
Optimal Control Dependence ComputationOptimal Control Dependence Computation

3CS243 Winter 2006
Stanford University

ExampleExample
START

a

b c

d

ENDCFG

b is control
dependent on a
c is control
dependent on a
a and d are control
dependent on
START

4CS243 Winter 2006
Stanford University

Applications of CDApplications of CD
Dead code eliminationDead code elimination
Scheduling (hyperScheduling (hyper--block formation)block formation)
PredicationPredication
……

5CS243 Winter 2006
Stanford University

Simple Dead Code EliminationSimple Dead Code Elimination

Mark inherently live statement liveMark inherently live statement live
Store to memory, print, Store to memory, print, ……

For each variable in these live statements, For each variable in these live statements,
mark its definition statement live.mark its definition statement live.
For each live statement, mark it live the For each live statement, mark it live the
node that it is control dependent on. node that it is control dependent on.
Remove everything that is not marked.Remove everything that is not marked.

6CS243 Winter 2006
Stanford University

ExampleExample

if (x > 0) {if (x > 0) {
printf(printf(““greatergreater than zerothan zero””););

}}

The The printfprintf statement is inherently live. You statement is inherently live. You
also need to mark the also need to mark the ““if (x>0)if (x>0)”” live live
because the because the ‘‘printprint’’ statement is control statement is control
dependent on the dependent on the ‘‘ifif’’..

7CS243 Winter 2006
Stanford University

Control DependenceControl Dependence

IntroductionIntroduction
Formal DefinitionFormal Definition
Optimal Control Dependence ComputationOptimal Control Dependence Computation

8CS243 Winter 2006
Stanford University

PostPost--dominator Relationdominator Relation
If X appears on every path from START to If X appears on every path from START to
Y, then X Y, then X dominatesdominates Y.Y.
If X appears on every path from Y to END, If X appears on every path from Y to END,
then X then X postdominatespostdominates Y.Y.
PostdominatorPostdominator TreeTree

END is the rootEND is the root
Any node Y other than END has Any node Y other than END has ipdom(Yipdom(Y) as) as
its parentits parent
Parent, child, ancestor, descendantParent, child, ancestor, descendant

9CS243 Winter 2006
Stanford University

Control Dependence RelationControl Dependence Relation
There are two possible definitions.There are two possible definitions.
Node w is control dependent on edge Node w is control dependent on edge
((uu→→vv) if) if

w w postdominatespostdominates vv
If w If w ≠≠ u, w does not u, w does not postdominatepostdominate uu

Node w is control dependent on node u if Node w is control dependent on node u if
there exists an edge there exists an edge uu→→vv

w w postdominatespostdominates vv
If w If w ≠≠ u, w does not u, w does not postdominatepostdominate uu

10CS243 Winter 2006
Stanford University

ExampleExample
S

a

b

c

d E

CFG

e

E
? ?

Pdom Tree

bb→→cc
SS→→aa

eeddccbbaa

Control Dep Relation

11CS243 Winter 2006
Stanford University

ExampleExample
S

a

b

c

d E

CFG

e

E
e

d

S
b

c

Pdom Tree
a

bb→→cc
SS→→aa

eeddccbbaa

Control Dep Relation

12CS243 Winter 2006
Stanford University

ExampleExample
S

a

b

c

d E

CFG

e

E
e

d

S
b

c

Pdom Tree
a

√√√√√√bb→→cc
√√√√√√SS→→aa
eeddccbbaa

Control Dep Relation

13CS243 Winter 2006
Stanford University

Control Dependence QueriesControl Dependence Queries
CD(eCD(e): set of nodes control dependent on): set of nodes control dependent on
edge eedge e
CONDS(vCONDS(v): set of edges that node v is): set of edges that node v is
control dependent oncontrol dependent on

14CS243 Winter 2006
Stanford University

Dominance FrontierDominance Frontier
Reverse control flow graph (RCFG)Reverse control flow graph (RCFG)
Let X and Y be nodes in CFG. X in DF(Y) Let X and Y be nodes in CFG. X in DF(Y)
in CFG in CFG iffiff Y is control dependent on X in Y is control dependent on X in
RCFG.RCFG.
DF(Y) in CFG = DF(Y) in CFG = conds(Yconds(Y) in RCFG, where) in RCFG, where
conds(Yconds(Y) is the set of nodes that Y is) is the set of nodes that Y is
control dependent on. control dependent on.

15CS243 Winter 2006
Stanford University

WorstWorst--case Size of CDRcase Size of CDR
CFG

dd→→aa

cc→→bb

SS→→aa

ddccbbaa

Control Dependence Relation

S

a

b

c

E

d

16CS243 Winter 2006
Stanford University

WorstWorst--case Size of CDRcase Size of CDR
CFG

√√√√√√√√dd→→aa

√√√√cc→→bb

√√√√√√√√SS→→aa

ddccbbaa

Control Dependence Relation
Size = O(n2)

S

a

b

c

E

d

17CS243 Winter 2006
Stanford University

Control DependenceControl Dependence

IntroductionIntroduction
Formal DefinitionFormal Definition
Optimal Linear Control Dependence Optimal Linear Control Dependence
ComputationComputation

18CS243 Winter 2006
Stanford University

APTAPT
APT: Augmented APT: Augmented PostdominatorPostdominator TreeTree

which can be built in O(|E|) space and timewhich can be built in O(|E|) space and time
which can be used to answer CD and CONDS which can be used to answer CD and CONDS
queries in time proportional to output sizequeries in time proportional to output size

Optimal control dependence computationOptimal control dependence computation
Solution: reduced control computation to a Solution: reduced control computation to a
graph problem called graph problem called Roman Chariots Roman Chariots
ProblemProblem

19CS243 Winter 2006
Stanford University

Key Idea (I): Exploit StructureKey Idea (I): Exploit Structure
How to avoid building the entire control How to avoid building the entire control
dependence relation (O(ndependence relation (O(n22))?))?

Nodes that are control dependent on an edge Nodes that are control dependent on an edge
e form a simple path in the e form a simple path in the postdominatorpostdominator tree tree
In a tree, a simple path is uniquely specified In a tree, a simple path is uniquely specified
by its endpoints.by its endpoints.

PdomPdom tree + endpoints of each control tree + endpoints of each control
dependence path can be built in O(|E|) dependence path can be built in O(|E|)
space and timespace and time

20CS243 Winter 2006
Stanford University

ExampleExample

??bb→→cc
??SS→→aa

pathpathEES

a

b

c

d E

CFG

e

Pdom Tree
c

E
e

d

S
b

a

Control Dep Relation

√√√√√√bb→→cc
√√√√√√SS→→aa
eeddccbbaa

Path Array

21CS243 Winter 2006
Stanford University

ExampleExample

[[c,bc,b]]bb→→cc
[[a,ea,e]]SS→→aa
pathpathEES

a

b

c

d E

CFG

e

Pdom Tree
c

E
e

d

S
b

a

Control Dep Relation

√√√√√√bb→→cc
√√√√√√SS→→aa
eeddccbbaa

Path Array

22CS243 Winter 2006
Stanford University

CD QueriesCD Queries
How can we use the compact How can we use the compact
representation of the CDR (Control representation of the CDR (Control
Dependence Relation) to answer queries Dependence Relation) to answer queries
for CD and CONDS sets in time for CD and CONDS sets in time
proportional to output size? proportional to output size?

23CS243 Winter 2006
Stanford University

Roman Chariots ProblemRoman Chariots Problem

CD(nCD(n): which cities are served by chariot n?): which cities are served by chariot n?
CONDS(wCONDS(w): which chariots serve city w?): which chariots serve city w?

[[Pompeii,BolognaPompeii,Bologna]]IIII
[[Venezia,RomaVenezia,Roma]]IIIIII

[[Milano,RomaMilano,Roma]]II

pathpathRoute Route
##

Napoli

Roma

Milano

Venezia

Bologna

Pompeii

Verona

Corleone

24CS243 Winter 2006
Stanford University

CD(nCD(n): which cities are served by): which cities are served by
chariot n?chariot n?

Look up entry for chariot n in Route Array Look up entry for chariot n in Route Array
(say [(say [x,yx,y])])
Traverse nodes in tree T, starting at x and Traverse nodes in tree T, starting at x and
ending at yending at y
Output all nodes encountered in traversalOutput all nodes encountered in traversal
Query time is proportional to output sizeQuery time is proportional to output size

25CS243 Winter 2006
Stanford University

CONDS(wCONDS(w): which chariots serve city w?): which chariots serve city w?

For each chariot c in Route Array doFor each chariot c in Route Array do
Let route of c be [Let route of c be [x,yx,y];];
If w is an ancestor of x and w is a descendant If w is an ancestor of x and w is a descendant
of y thenof y then

Output c;Output c;

Can we avoid examining all routes?Can we avoid examining all routes?

26CS243 Winter 2006
Stanford University

Key Idea (II): CachingKey Idea (II): Caching
At each node in the tree, keep a list of At each node in the tree, keep a list of
chariot #chariot #’’s whose bottom node is n.s whose bottom node is n.

[[c,bc,b]]IIII
[[a,ea,e]]II
routerouteChariot #Chariot #

c

E
e

d

S
b

a {?}

{?}

27CS243 Winter 2006
Stanford University

Key Idea (II): CachingKey Idea (II): Caching
At each node in the tree, keep a list of At each node in the tree, keep a list of
chariot #chariot #’’s whose bottom node is n.s whose bottom node is n.

[[c,bc,b]]IIII
[[a,ea,e]]II
routerouteChariot #Chariot #

c

E
e

d

S
b

a {I}

{II}

28CS243 Winter 2006
Stanford University

CONDS(wCONDS(w): which chariots serve city w?): which chariots serve city w?

For each descendant d of w doFor each descendant d of w do
For each route c = [For each route c = [x,yx,y] in list at d do] in list at d do

If w is a descendant of y thenIf w is a descendant of y then
Output c;Output c;

Query time is proportional to # of Query time is proportional to # of
descendants + size of all lists at ddescendants + size of all lists at d

29CS243 Winter 2006
Stanford University

Sorting ListsSorting Lists
Sort each list by decreasing lengthSort each list by decreasing length

[[e,be,b]]IIIIII
[[e,ce,c]]IIII

[[e,ae,a]]IVIV

[[e,de,d]]II
routerouteChariot #Chariot #

c

E

a

d

S
b

{IV,III,II,I}e

30CS243 Winter 2006
Stanford University

CONDS(wCONDS(w): which chariots serve city w?): which chariots serve city w?

For each descendant d of w doFor each descendant d of w do
For each route c = [For each route c = [x,yx,y] in list at d do] in list at d do

If w is a descendant of y If w is a descendant of y
thenthen

Output c;Output c;

elseelse
breakbreak

Query time is proportional to size of Query time is proportional to size of
output + # of descendantsoutput + # of descendants

31CS243 Winter 2006
Stanford University

Caching at All Nodes on RouteCaching at All Nodes on Route

Sort each list by decreasing lengthSort each list by decreasing length

c

E

a

d

b

{IV,III,II,I}e

c

E

a

d

b

{IV,III,II,I}e
{IV,III,II,I}

{IV,III,II}

{IV,III}

{IV}

32CS243 Winter 2006
Stanford University

Space Time TradeoffSpace Time Tradeoff
Chariot # stored only at bottom node of the Chariot # stored only at bottom node of the
routeroute

Space: O(|V| + |A|)Space: O(|V| + |A|)
Query Time: O(|V| + |Output|)Query Time: O(|V| + |Output|)

Chariot # stored at all nodes on routeChariot # stored at all nodes on route
Space: O(|V| * |A|)Space: O(|V| * |A|)
Query Time: Query Time: O(|OutputO(|Output|) |)

V is the set of tree nodes, and A is the V is the set of tree nodes, and A is the
Route Array.Route Array.

33CS243 Winter 2006
Stanford University

Key idea (III): Caching ZonesKey idea (III): Caching Zones
Divide tree into ZONESDivide tree into ZONES
Nodes in Zone:Nodes in Zone:

Boundary nodes: lowest nodes in zoneBoundary nodes: lowest nodes in zone
Interior nodes: all other nodesInterior nodes: all other nodes

Query procedure: Query procedure:
Visit only nodes below query node and in Visit only nodes below query node and in
the same zone as query nodethe same zone as query node

34CS243 Winter 2006
Stanford University

Caching RuleCaching Rule
Boundary node: store all chariots serving Boundary node: store all chariots serving
nodenode
Interior node: store all chariots whose Interior node: store all chariots whose
bottom node is that nodebottom node is that node
Algorithm: bottomAlgorithm: bottom--up, greedy zone up, greedy zone
constructionconstruction

Query time: |AQuery time: |Avv| + |Z| + |Zvv| | ≤≤ ((αα + 1) + 1) |A|Avv| |
Space requirements Space requirements ≤≤ |A| + |V| / |A| + |V| / αα

35CS243 Winter 2006
Stanford University

Constructing Zones (I)Constructing Zones (I)
Invariant: for any node v, |ZInvariant: for any node v, |Zvv| | ≤≤ αα |A|Avv| + 1, | + 1,
where where αα is a design parameter. is a design parameter.
Query time for Query time for CONDS(vCONDS(v))
= = O(O(|A|Avv| + |Z| + |Zvv|) |)
= = O((O((αα + 1)+ 1)|A|Avv| + 1) | + 1)
= = O(O(|A|Avv|) |)

36CS243 Winter 2006
Stanford University

Constructing Zones (II)Constructing Zones (II)
Build zones bottomBuild zones bottom--up, making them as up, making them as
large as possible without violating invariantlarge as possible without violating invariant
V is a leaf node, then make v a boundary V is a leaf node, then make v a boundary
nodenode
V is an interior node thenV is an interior node then

If (1 + If (1 + ∑∑u u єє children(vchildren(v)) ||ZZuu|) > |) > αα |A|Avv| + 1| + 1
then make v a boundary nodethen make v a boundary node
else make v an interior node else make v an interior node

37CS243 Winter 2006
Stanford University

αα = 1 (some caching)= 1 (some caching)
Zones: Zones:
{{a,b,c,d,ea,b,c,d,e}}
, {, {f,g,hf,g,h}, },
{E}, {S}{E}, {S}
Boundary Boundary
nodes: a, nodes: a,
f, E, Sf, E, S

f

c

e

b

d

{S→a, h→a}a

g

E
hS 3

4

5

6

6

5
4

3

α |Av| + 1

{g→b}

{f→c}
{e→d}

{}

{S→a, h→a, g→a, f→c}

{}

{}

38CS243 Winter 2006
Stanford University

αα = >>(no caching)= >>(no caching)
Zones: Zones:
{{a,b,c,d,e,fa,b,c,d,e,f
,g,h,g,h}, {E}, }, {E},
{S}{S}
Boundary Boundary
nodes: a, nodes: a,
E, SE, S

∞

{}

{}

f

c

e

b

d

{S→a, h→a}a

g

E
hS

∞

α |Av| + 1

{g→b}

{f→c}
{e→d}

{}

{}

∞

∞

∞

∞

∞
∞

39CS243 Winter 2006
Stanford University

αα = << (full caching)= << (full caching)

Zones: Zones:
every every
nodenode
Boundary Boundary
nodes: nodes:
every every
nodenode

f

c

e

b

d

{S→a, h→a}a

g

E
hS 1

1

1

1

1

1
1

1

α |Av| + 1

{S→a, h→a, g→b}

{S→a, h→a, g→b, f→c}
{S→a, h→a, g→b, f→c, e→d}

{S→a, h→a, g→b, f→c, e→d}

{S→a, h→a, g→a, f→c}

{S→a, h→a, g→a}

{S→a, h→a}

40CS243 Winter 2006
Stanford University

APT (I)APT (I)

PostdominatorPostdominator tree with bidirectional tree with bidirectional
edgesedges
dfsdfs--number[vnumber[v]: integer]: integer

Used for Used for ancestorshipancestorship determination in determination in
CONDS queryCONDS query

Boundary?[vBoundary?[v]:]: booleanboolean
True if v is a boundary node, false otherwiseTrue if v is a boundary node, false otherwise
Used in CONDS queryUsed in CONDS query

41CS243 Winter 2006
Stanford University

APT (II)APT (II)

L[vL[v]: list pf chariots #]: list pf chariots #’’s/control s/control
dependencesdependences

Boundary node: all chariots serving v (all Boundary node: all chariots serving v (all
control dependences of v)control dependences of v)
Interior node: all chariots whose bottom node Interior node: all chariots whose bottom node
is v (all immediate control dependences of v)is v (all immediate control dependences of v)
Used in CONDS queryUsed in CONDS query

42CS243 Winter 2006
Stanford University

Computational ComplexityComputational Complexity

Query time: (Query time: (αα + 1)+ 1) * * outputoutput--sizesize
Space: Space: |E| + |V||E| + |V|//αα

43CS243 Winter 2006
Stanford University

ReferenceReference

““Optimal Control Dependence Optimal Control Dependence
Computation and the Roman Chariots Computation and the Roman Chariots
ProblemProblem””,, Keshav Pingali, Gianfranco Keshav Pingali, Gianfranco
BilardiBilardi, ACM Transactions on , ACM Transactions on
Programming Languages and Systems Programming Languages and Systems
(TOPLAS), May 1997. (TOPLAS), May 1997.
http://iss.cs.cornell.edu/Publications/Pahttp://iss.cs.cornell.edu/Publications/Pa
pers/TOPLAS1997.pdfpers/TOPLAS1997.pdf

