Control Dependence

CS243 Winter 2006 Wei Li

Control Dependence

m /ntroduction
= Formal Definition
= Optimal Control Dependence Computation

Stanford University CS243 Winter 2006

CEFG

Stanford University

Example

END

= bis control
dependent on a

= Cc Is control
dependent on a

m a8 and d are control

dependent on
START

CS243 Winter 2006

Applications of CD

m Dead code elimination
m Scheduling (hyper-block formation)

m Predication
H ...

Stanford University CS243 Winter 2006

Simple Dead Code Elimination

m Mark inherently live statement live
= Store to memory, print, ...

m For each variable in these live statements,
mark its definition statement live.

m For each live statement, mark it live the
node that it is control dependent on.

m Remove everything that is not marked.

Stanford University CS243 Winter 2006

Example

m if (x> 0){
= printf("greater than zero”);

"}

m [he printf statement is inherently live. You
also need to mark the “if (x>0)” live
because the ‘print’ statement is control
dependent on the if.

Stanford University CS243 Winter 2006
6

Control Dependence

= Introduction
m Formal Definition
= Optimal Control Dependence Computation

Stanford University CS243 Winter 2006

Post-dominator Relation

m [f X appears on every path from START to
Y, then X dominates Y .

m If X appears on every path from Y to END,
then X postdominates Y.

m Postdominator Tree
m END is the root

= Any node Y other than END has ipdom(Y) as
its parent

m Parent, child, ancestor, descendant

Stanford University CS243 Winter 2006

Control Dependence Relation

m [here are two possible definitions.

= Node w is control dependent on edge
(U—>V) If
= W postdominates v
= [f w# u, w does not postdominate u

= Node w is control dependent on node u if
there exists an edge u—v
= W postdominates v
= If w# u, w does not postdominate u

Stanford University CS243 Winter 2006

T le— 8 |e—| U

d

Stanford University

Example

CEFG

—

N

? >
* °
Pdom Tree

S—a
b—C

Control Dep Relation

CS243 Winter 2006

10

T le— 8 |e—| U

d

Stanford University

Example

CEFG

—

N

S S

b\ Pdom Tree
{

a

S—a
b—C

Control Dep Relation

CS243 Winter 2006

11

T le— 8 |e—| U

d

Stanford University

Example

CEFG

—

N

S S

b\ Pdom Tree
{

a

S—al|V |+ \
b—C V| V|

Control Dep Relation

CS243 Winter 2006

12

Control Dependence Queries

m CD(e): set of nodes control dependent on
edge e

s CONDS(v): set of edges that node v Is
control dependent on

Stanford University CS243 Winter 2006

13

Dominance Frontier

m Reverse control flow graph (RCFG)

m Let Xand Y be nodes in CFG. X in DF(Y)
In CFG iff Y is control dependent on X in
RCFG.

m DF(Y) in CFG = conds(Y) in RCFG, where
conds(Y) is the set of nodes that Y Is
control dependent on.

Stanford University CS243 Winter 2006 ”

Worst-case Size of CDR

? CEG alb|c|d
e S—a
L4
b d—a
¥
c—b
C
d Control Dependence Relation

E

Stanford University

CS243 Winter 2006 15

Worst-case Size of CDR

CEFG

S

. al/lb|c|d
a S—a v |

4

b d—a N |

:: c—b v |

Control Dependence Relation
Size = O(n?)

e e

Stanford University

CS243 Winter 2006 T

Control Dependence

= Introduction
s Formal Definition

m Optimal Linear Control Dependence
Computation

Stanford University CS243 Winter 2006

17

APT

s APT: Augmented Postdominator Tree
= which can be built in O(|E|) space and time

= which can be used to answer CD and CONDS
gueries in time proportional to output size

s Optimal control dependence computation

m Solution: reduced control computation to a
graph problem called Roman Chariots
Problem

Stanford University CS243 Winter 2006 8

Key Idea (l): Exploit Structure

= How to avoid building the entire control
dependence relation (O(n?))?

= Nodes that are control dependent on an edge
e form a simple path in the postdominator tree

= In a tree, a simple path is uniquely specified
by its endpoints.
s Pdom tree + endpoints of each control

dependence path can be built in O(|E|)
space and time

Stanford University CS243 Winter 2006 o

CFG |S
!
a
!
b
C
d

Stanford University

—

Example

/E\ E | path
i S S—a| ?
(f 2 b—c| ?
¥
C
Pdom Tree —t
blc|d|e
S—a \ \
b—cC NIV

Control Dep Relation

CS243 Winter 2006

20

CFG |S
!
a
!
b
C
d

Stanford University

—

Example

/E\ E | path
i S S—a | [a,e]
4 o b—c | [c,b]
¥
C
Pdom Tree "
blc|d|e
S—a \ \
b—cC v N

Control Dep Relation

CS243 Winter 2006

21

CD Queries

m How can we use the compact
representation of the CDR (Control
Dependence Relation) to answer queries

for CD and CONDS sets in time
proportional to output size?

Stanford University CS243 Winter 2006

22

Roman Chariots Problem

Roma
/ N

Milano Bolo gna

— '\

Napoli Verona
Pompeii Venezia
Corleone

Route
H

path

[Milano,Roma]

[Pompeili,Bologna]

[Venezia,Roma]

m CD(n): which cities are served by chariot n?
m CONDS(w): which chariots serve city w?

Stanford University

CS243 Winter 2006

23

CD(n): which cities are served by
chariot n?

s Look up entry for chariot n in Route Array

(say [x.y])
m [raverse nodes in tree T, starting at x and
ending at y
m Output all nodes encountered In traversal
m Query time is proportional to output size

Stanford University CS243 Winter 2006 o

CONDS(w): which chariots serve city w?

m For each chariot ¢ in Route Array do
= Let route of c be [x,y];

m If wis an ancestor of x and w is a descendant
of y then

m Output c;
s Can we avoid examining all routes?

Stanford University CS243 Winter 2006 .

Key Idea (ll): Caching

m At each node in the tree, keep a list of
chariot #'s whose bottom node is n.

e/E \S Chariot #| route

{ | [a,€e]
5(~a {P) | [c,b]
¢ {7

Stanford University CS243 Winter 2006

Key Idea (ll): Caching

m At each node in the tree, keep a list of
chariot #'s whose bottom node is n.

e/E \S Chariot #| route

{) | [a,e]
5{ ~a {1 | [c,b]
¢ {1

Stanford University CS243 Winter 2006

CONDS(w): which chariots serve city w?

m For each descendant d of w do

m For each route c = [x,y] in list at d do

m [fwis a descendant of y then
= Output c;

s Query time is proportional to # of
descendants + size of all lists at d

Stanford University CS243 Winter 2006 28

Sorting Lists

m Sort each list by decreasing length

E
/
a

€ IV, IILILI}

Stanford University

Chariot #| route
| e,d

| e,C]

1l e,b

IV e,a

CS243 Winter 2006

CONDS(w): which chariots serve city w?

m For each descendant d of w do

m For each route c = [x,y] in list at d do
m [fwis adescendant of y

m then
= Output c;

m else
m break

m Query time is proportional to size of
output + # of descendants

Stanford University CS243 Winter 2006 20

Caching at All Nodes on Route

m Sort each list by decreasing length

H E
al l
/ & vy
P b {Iv,im
; C {IV,IILII
4 /
/ /d STV, IILILI}

C
IV, ILILI} € {IV,IILILI}

Stanford University CS243 Winter 2006

31

Space Time Tradeoff

m Chariot # stored only at bottom node of the
route

= Space: O(|V| + |A])
= Query Time: O(|V| + |Output|)

m Chariot # stored at all nodes on route
= Space: O(|V| * |A])
= Query Time: O(|Output|)

m V Is the set of tree nodes, and A is the
Route Array.

Stanford University CS243 Winter 2006 2

Key idea (lll): Caching Zones

m Divide tree into ZONES

m Nodes In Zone:
= Boundary nodes: lowest nodes in zone
m Interior nodes: all other nodes

= Query procedure:

= Visit only nodes below query node and in
the same zone as query node

Stanford University CS243 Winter 2006

KK]

Caching Rule

m Boundary node: store all chariots serving
node

m Interior node: store all chariots whose
bottom node Is that node

m Algorithm: bottom-up, greedy zone
construction
= Query time: |[A | + |Z,| < (a + 1) [A)]
= Space requirements < [A| + |V]|/ a

Stanford University CS243 Winter 2006 o

Constructing Zones ()

= Invariant: for any node v, [Z,|<a|A |+ 1,
where a is a design parameter.

m Query time for CONDS(v)
= O(|A/ + [Z,])
= O((a+ 1)|A,] + 1)
= O(|A])

Stanford University CS243 Winter 2006

35

Constructing Zones (ll)

= Build zones bottom-up, making them as
large as possible without violating invariant

m V Is a leaf node, then make v a boundary
node

= V IS an interior node then

w (1 + >, ¢ chilgren) 14ul) > O |A [+ 1
= then make v a boundary node
m else make v an interior node

Stanford University CS243 Winter 2006 26

a =1 (some caching)

m /ZONEes:

0 {a,b,c,d,e}
, 11,9,h},

{E}, {S}

15—a, h—a, g—a, f—c} u Boundary

nodes: a,
f,E, S

CS243 Winter 2006 37

a = >>(no caching)

m ZONnes:
{a,b,c,d,ef

,.9.h}, {E},
{S}
s Boundary

nodes: a,
E,S

Stanford University CS243 Winter 2006 28

a = << (full caching)

E m ZONeEeSs:
S| 1_Lh[{S—a, h—a} every
o |Av| +11 g’ {S—a, h—a, g—a} node
\ 1 {S—a, h—a, g—a, f—c} . Eggggary

1 |e| {S—a, h—a, g—b, f—c, e—d} every
1|d|{S—a, h—a, g—b, f—c, e—d} hode
1 |c| {S—a, h—a, g—b, f—c}
1 |b| {S—a, h—a, g—b}
1 a {S—a,h—a}

Stanford University

CS243 Winter 2006 39

APT (I)

m Postdominator tree with bidirectional
edges
m dfs-number]v]: integer

= Used for ancestorship determination in
CONDS query

s Boundary?[v]. boolean

= [rue If v Is a boundary node, false otherwise
= Used in CONDS query

Stanford University CS243 Winter 2006

40

N ()

m L[v]: list pf chariots #'s/control
dependences

= Boundary node: all chariots serving v (all
control dependences of v)

m Interior node: all chariots whose bottom node
Is v (all immmediate control dependences of v)

= Used in CONDS query

Stanford University CS243 Winter 2006

41

Computational Complexity

= Query time: (a + 1) * output-size
m Space: |E| + |V|/a

Stanford University CS243 Winter 2006

42

Reference

m “Optimal Control Dependence
Computation and the Roman Chariots
Problem”, Keshav Pingali, Gianfranco
Bilardi, ACM Transactions on
Programming Languages and Systems
(TOPLAS), May 1997.
http://iss.cs.cornell.edu/Publications/Pa
pers/TOPLAS1997.pdf

Stanford University CS243 Winter 2006 43

