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ExampleExample
START

a

b c

d

ENDCFG

b is control 
dependent on a
c is control 
dependent on a
a and d are control 
dependent on 
START
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Applications of CDApplications of CD
Dead code eliminationDead code elimination
Scheduling (hyperScheduling (hyper--block formation)block formation)
PredicationPredication
……
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Simple Dead Code EliminationSimple Dead Code Elimination

Mark inherently live statement liveMark inherently live statement live
Store to memory, print, Store to memory, print, ……

For each variable in these live statements, For each variable in these live statements, 
mark its definition statement live.mark its definition statement live.
For each live statement, mark it live the For each live statement, mark it live the 
node that it is control dependent on. node that it is control dependent on. 
Remove everything that is not marked.Remove everything that is not marked.
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ExampleExample

if (x > 0) {if (x > 0) {
printf(printf(““greatergreater than zerothan zero””););

}}

The The printfprintf statement is inherently live.  You statement is inherently live.  You 
also need to mark the also need to mark the ““if (x>0)if (x>0)”” live live 
because the because the ‘‘printprint’’ statement is control statement is control 
dependent on the dependent on the ‘‘ifif’’..
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PostPost--dominator Relationdominator Relation
If X appears on every path from START to If X appears on every path from START to 
Y, then X Y, then X dominatesdominates Y.Y.
If X appears on every path from Y to END, If X appears on every path from Y to END, 
then X then X postdominatespostdominates Y.Y.
PostdominatorPostdominator TreeTree

END is the rootEND is the root
Any node Y other than END has Any node Y other than END has ipdom(Yipdom(Y) as ) as 
its parentits parent
Parent, child, ancestor, descendantParent, child, ancestor, descendant
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Control Dependence RelationControl Dependence Relation
There are two possible definitions.There are two possible definitions.
Node w is control dependent on edge Node w is control dependent on edge 
((uu→→vv) if ) if 

w w postdominatespostdominates vv
If w If w ≠≠ u, w does not u, w does not postdominatepostdominate uu

Node w is control dependent on node u if Node w is control dependent on node u if 
there exists an edge there exists an edge uu→→vv

w w postdominatespostdominates vv
If w If w ≠≠ u, w does not u, w does not postdominatepostdominate uu
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ExampleExample
S

a

b

c

d E

CFG

e

E
? ?

Pdom Tree

bb→→cc
SS→→aa

eeddccbbaa

Control Dep Relation
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ExampleExample
S

a

b

c

d E

CFG

e

E
e

d

S
b

c

Pdom Tree
a

bb→→cc
SS→→aa

eeddccbbaa

Control Dep Relation
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ExampleExample
S

a

b

c

d E

CFG

e

E
e

d

S
b

c

Pdom Tree
a

√√√√√√bb→→cc
√√√√√√SS→→aa
eeddccbbaa

Control Dep Relation
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Control Dependence QueriesControl Dependence Queries
CD(eCD(e): set of nodes control dependent on ): set of nodes control dependent on 
edge eedge e
CONDS(vCONDS(v): set of edges that node v is ): set of edges that node v is 
control dependent oncontrol dependent on
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Dominance FrontierDominance Frontier
Reverse control flow graph (RCFG)Reverse control flow graph (RCFG)
Let X and Y be nodes in CFG. X in DF(Y) Let X and Y be nodes in CFG. X in DF(Y) 
in CFG in CFG iffiff Y is control dependent on X in Y is control dependent on X in 
RCFG.RCFG.
DF(Y) in CFG = DF(Y) in CFG = conds(Yconds(Y) in RCFG, where ) in RCFG, where 
conds(Yconds(Y) is the set of nodes that Y is ) is the set of nodes that Y is 
control dependent on. control dependent on. 
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WorstWorst--case Size of CDRcase Size of CDR
CFG

dd→→aa

cc→→bb

SS→→aa

ddccbbaa

Control Dependence Relation

S

a

b

c

E

d
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WorstWorst--case Size of CDRcase Size of CDR
CFG

√√√√√√√√dd→→aa

√√√√cc→→bb

√√√√√√√√SS→→aa

ddccbbaa

Control Dependence Relation
Size = O(n2)

S

a

b

c

E

d
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Control DependenceControl Dependence

IntroductionIntroduction
Formal DefinitionFormal Definition
Optimal Linear Control Dependence Optimal Linear Control Dependence 
ComputationComputation
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APTAPT
APT: Augmented APT: Augmented PostdominatorPostdominator TreeTree

which can be built in O(|E|) space and timewhich can be built in O(|E|) space and time
which can be used to answer CD and CONDS which can be used to answer CD and CONDS 
queries in time proportional to output sizequeries in time proportional to output size

Optimal control dependence computationOptimal control dependence computation
Solution: reduced control computation to a Solution: reduced control computation to a 
graph problem called graph problem called Roman Chariots Roman Chariots 
ProblemProblem
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Key Idea (I): Exploit StructureKey Idea (I): Exploit Structure
How to avoid building the entire control How to avoid building the entire control 
dependence relation (O(ndependence relation (O(n22))?))?

Nodes that are control dependent on an edge Nodes that are control dependent on an edge 
e form a simple path in the e form a simple path in the postdominatorpostdominator tree tree 
In a tree, a simple path is uniquely specified In a tree, a simple path is uniquely specified 
by its endpoints.by its endpoints.

PdomPdom tree + endpoints of each control tree + endpoints of each control 
dependence path can be built in O(|E|) dependence path can be built in O(|E|) 
space and timespace and time
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ExampleExample

??bb→→cc
??SS→→aa

pathpathEES

a

b

c

d E

CFG

e

Pdom Tree
c

E
e

d

S
b

a

Control Dep Relation

√√√√√√bb→→cc
√√√√√√SS→→aa
eeddccbbaa

Path Array
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ExampleExample

[[c,bc,b]]bb→→cc
[[a,ea,e]]SS→→aa
pathpathEES

a

b

c

d E

CFG

e

Pdom Tree
c

E
e

d

S
b

a

Control Dep Relation

√√√√√√bb→→cc
√√√√√√SS→→aa
eeddccbbaa

Path Array
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CD QueriesCD Queries
How can we use the compact How can we use the compact 
representation of the CDR (Control representation of the CDR (Control 
Dependence Relation) to answer queries Dependence Relation) to answer queries 
for CD and CONDS sets in time for CD and CONDS sets in time 
proportional to output size? proportional to output size? 



23CS243 Winter 2006
Stanford University

Roman Chariots ProblemRoman Chariots Problem

CD(nCD(n): which cities are served by chariot n?): which cities are served by chariot n?
CONDS(wCONDS(w): which chariots serve city w?): which chariots serve city w?

[[Pompeii,BolognaPompeii,Bologna]]IIII
[[Venezia,RomaVenezia,Roma]]IIIIII

[[Milano,RomaMilano,Roma]]II

pathpathRoute Route 
##

Napoli

Roma

Milano

Venezia

Bologna

Pompeii

Verona

Corleone
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CD(nCD(n): which cities are served by ): which cities are served by 
chariot n?chariot n?

Look up entry for chariot n in Route Array Look up entry for chariot n in Route Array 
(say [(say [x,yx,y])])
Traverse nodes in tree T, starting at x and Traverse nodes in tree T, starting at x and 
ending at yending at y
Output all nodes encountered in traversalOutput all nodes encountered in traversal
Query time is proportional to output sizeQuery time is proportional to output size
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CONDS(wCONDS(w): which chariots serve city w?): which chariots serve city w?

For each chariot c in Route Array doFor each chariot c in Route Array do
Let route of c be [Let route of c be [x,yx,y];];
If w is an ancestor of x and w is a descendant If w is an ancestor of x and w is a descendant 
of y thenof y then

Output c;Output c;

Can we avoid examining all routes?Can we avoid examining all routes?
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Key Idea (II): CachingKey Idea (II): Caching
At each node in the tree, keep a list of At each node in the tree, keep a list of 
chariot #chariot #’’s whose bottom node is n.s whose bottom node is n.

[[c,bc,b]]IIII
[[a,ea,e]]II
routerouteChariot #Chariot #

c

E
e

d

S
b

a {?}

{?}
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Key Idea (II): CachingKey Idea (II): Caching
At each node in the tree, keep a list of At each node in the tree, keep a list of 
chariot #chariot #’’s whose bottom node is n.s whose bottom node is n.

[[c,bc,b]]IIII
[[a,ea,e]]II
routerouteChariot #Chariot #

c

E
e

d

S
b

a {I}

{II}
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CONDS(wCONDS(w): which chariots serve city w?): which chariots serve city w?

For each descendant d of w doFor each descendant d of w do
For each route c = [For each route c = [x,yx,y] in list at d do] in list at d do

If w is a descendant of y thenIf w is a descendant of y then
Output c;Output c;

Query time is proportional to # of Query time is proportional to # of 
descendants + size of all lists at ddescendants + size of all lists at d
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Sorting ListsSorting Lists
Sort each list by decreasing lengthSort each list by decreasing length

[[e,be,b]]IIIIII
[[e,ce,c]]IIII

[[e,ae,a]]IVIV

[[e,de,d]]II
routerouteChariot #Chariot #

c

E

a

d

S
b

{IV,III,II,I}e
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CONDS(wCONDS(w): which chariots serve city w?): which chariots serve city w?

For each descendant d of w doFor each descendant d of w do
For each route c = [For each route c = [x,yx,y] in list at d do] in list at d do

If w is a descendant of y If w is a descendant of y 
thenthen

Output c;Output c;

elseelse
breakbreak

Query time is proportional to size of Query time is proportional to size of 
output + # of descendantsoutput + # of descendants
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Caching at All Nodes on RouteCaching at All Nodes on Route

Sort each list by decreasing lengthSort each list by decreasing length

c

E

a

d

b

{IV,III,II,I}e

c

E

a

d

b

{IV,III,II,I}e
{IV,III,II,I}

{IV,III,II}

{IV,III}

{IV}
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Space Time TradeoffSpace Time Tradeoff
Chariot # stored only at bottom node of the Chariot # stored only at bottom node of the 
routeroute

Space: O(|V| + |A|)Space: O(|V| + |A|)
Query Time: O(|V| + |Output|)Query Time: O(|V| + |Output|)

Chariot # stored at all nodes on routeChariot # stored at all nodes on route
Space: O(|V| * |A|)Space: O(|V| * |A|)
Query Time: Query Time: O(|OutputO(|Output|) |) 

V is the set of tree nodes, and A is the V is the set of tree nodes, and A is the 
Route Array.Route Array.
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Key idea (III): Caching ZonesKey idea (III): Caching Zones
Divide tree into ZONESDivide tree into ZONES
Nodes in Zone:Nodes in Zone:

Boundary nodes: lowest nodes in zoneBoundary nodes: lowest nodes in zone
Interior nodes: all other nodesInterior nodes: all other nodes

Query procedure: Query procedure: 
Visit only nodes below query node and in Visit only nodes below query node and in 
the same zone as query nodethe same zone as query node
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Caching RuleCaching Rule
Boundary node: store all chariots serving Boundary node: store all chariots serving 
nodenode
Interior node: store all chariots whose Interior node: store all chariots whose 
bottom node is that nodebottom node is that node
Algorithm: bottomAlgorithm: bottom--up, greedy zone up, greedy zone 
constructionconstruction

Query time: |AQuery time: |Avv| + |Z| + |Zvv| | ≤≤ ((αα + 1) + 1) |A|Avv| | 
Space requirements Space requirements ≤≤ |A| + |V| / |A| + |V| / αα
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Constructing Zones (I)Constructing Zones (I)
Invariant: for any node v, |ZInvariant: for any node v, |Zvv| | ≤≤ αα |A|Avv| + 1, | + 1, 
where where αα is a design parameter. is a design parameter. 
Query time for Query time for CONDS(vCONDS(v) ) 
= = O(O(|A|Avv| + |Z| + |Zvv|) |) 
= = O((O((αα + 1)+ 1)|A|Avv| + 1) | + 1) 
= = O(O(|A|Avv|) |) 
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Constructing Zones (II)Constructing Zones (II)
Build zones bottomBuild zones bottom--up, making them as up, making them as 
large as possible without violating invariantlarge as possible without violating invariant
V is a leaf node, then make v a boundary V is a leaf node, then make v a boundary 
nodenode
V is an interior node thenV is an interior node then

If (1 + If (1 + ∑∑u u єє children(vchildren(v)) ||ZZuu|) > |) > αα |A|Avv| + 1| + 1
then make v a boundary nodethen make v a boundary node
else make v an interior node else make v an interior node 
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αα = 1 (some caching)= 1 (some caching)
Zones: Zones: 
{{a,b,c,d,ea,b,c,d,e}}
, {, {f,g,hf,g,h}, }, 
{E}, {S}{E}, {S}
Boundary Boundary 
nodes: a, nodes: a, 
f, E, Sf, E, S

f

c

e

b

d

{S→a, h→a}a

g

E
hS 3

4

5

6

6

5
4

3

α |Av| + 1

{g→b}

{f→c}
{e→d}

{}

{S→a, h→a, g→a, f→c}

{}

{}
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αα = >>(no caching)= >>(no caching)
Zones: Zones: 
{{a,b,c,d,e,fa,b,c,d,e,f
,g,h,g,h}, {E}, }, {E}, 
{S}{S}
Boundary Boundary 
nodes: a, nodes: a, 
E, SE, S

∞

{}

{}

f

c

e

b

d

{S→a, h→a}a

g

E
hS

∞

α |Av| + 1

{g→b}

{f→c}
{e→d}

{}

{}

∞

∞

∞

∞

∞
∞
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αα = << (full caching)= << (full caching)

Zones: Zones: 
every every 
nodenode
Boundary Boundary 
nodes: nodes: 
every every 
nodenode

f

c

e

b

d

{S→a, h→a}a

g

E
hS 1

1

1

1

1

1
1

1

α |Av| + 1

{S→a, h→a, g→b}

{S→a, h→a, g→b, f→c}
{S→a, h→a, g→b, f→c, e→d}

{S→a, h→a, g→b, f→c, e→d}

{S→a, h→a, g→a, f→c}

{S→a, h→a, g→a}

{S→a, h→a}
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APT (I)APT (I)

PostdominatorPostdominator tree with bidirectional tree with bidirectional 
edgesedges
dfsdfs--number[vnumber[v]: integer]: integer

Used for Used for ancestorshipancestorship determination in determination in 
CONDS queryCONDS query

Boundary?[vBoundary?[v]: ]: booleanboolean
True if v is a boundary node, false otherwiseTrue if v is a boundary node, false otherwise
Used in CONDS queryUsed in CONDS query
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APT (II)APT (II)

L[vL[v]: list pf chariots #]: list pf chariots #’’s/control s/control 
dependencesdependences

Boundary node: all chariots serving v (all Boundary node: all chariots serving v (all 
control dependences of v)control dependences of v)
Interior node: all chariots whose bottom node Interior node: all chariots whose bottom node 
is v (all immediate control dependences of v)is v (all immediate control dependences of v)
Used in CONDS queryUsed in CONDS query
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Computational ComplexityComputational Complexity

Query time: (Query time: (αα + 1)+ 1) * * outputoutput--sizesize
Space: Space: |E| + |V||E| + |V|//αα
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