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Applications of CD

m Dead code elimination
m Scheduling (hyper-block formation)

m Predication
H ...
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Simple Dead Code Elimination

m Mark inherently live statement live
= Store to memory, print, ...

m For each variable in these live statements,
mark its definition statement live.

m For each live statement, mark it live the
node that it is control dependent on.

m Remove everything that is not marked.
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Example

m if (x> 0){
= printf("greater than zero”);

"}

m [he printf statement is inherently live. You
also need to mark the “if (x>0)” live
because the ‘print’ statement is control
dependent on the if.
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Control Dependence

= Introduction
m Formal Definition
= Optimal Control Dependence Computation
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Post-dominator Relation

m [f X appears on every path from START to
Y, then X dominates Y .

m If X appears on every path from Y to END,
then X postdominates Y.

m Postdominator Tree
m END is the root

= Any node Y other than END has ipdom(Y) as
its parent

m Parent, child, ancestor, descendant
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Control Dependence Relation

m [here are two possible definitions.

= Node w is control dependent on edge
(U—>V) If
= W postdominates v
= [f w# u, w does not postdominate u

= Node w is control dependent on node u if
there exists an edge u—v
= W postdominates v
= If w# u, w does not postdominate u
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Control Dependence Queries

m CD(e): set of nodes control dependent on
edge e

s CONDS(v): set of edges that node v Is
control dependent on
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Dominance Frontier

m Reverse control flow graph (RCFG)

m Let Xand Y be nodes in CFG. X in DF(Y)
In CFG iff Y is control dependent on X in
RCFG.

m DF(Y) in CFG = conds(Y) in RCFG, where
conds(Y) is the set of nodes that Y Is
control dependent on.
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Worst-case Size of CDR
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Worst-case Size of CDR
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Control Dependence

= Introduction
s Formal Definition

m Optimal Linear Control Dependence
Computation
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APT

s APT: Augmented Postdominator Tree
= which can be built in O(|E|) space and time

= which can be used to answer CD and CONDS
gueries in time proportional to output size

s Optimal control dependence computation

m Solution: reduced control computation to a
graph problem called Roman Chariots
Problem
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Key Idea (l): Exploit Structure

= How to avoid building the entire control
dependence relation (O(n?))?

= Nodes that are control dependent on an edge
e form a simple path in the postdominator tree

= In a tree, a simple path is uniquely specified
by its endpoints.
s Pdom tree + endpoints of each control

dependence path can be built in O(|E|)
space and time
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CD Queries

m How can we use the compact
representation of the CDR (Control
Dependence Relation) to answer queries

for CD and CONDS sets in time
proportional to output size?
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Roman Chariots Problem

Roma
/ N

Milano Bolo gna

— '\

Napoli Verona
Pompeii Venezia
Corleone

Route
H

path

[Milano,Roma]

[Pompeili,Bologna]

[Venezia,Roma]

m  CD(n): which cities are served by chariot n?
m CONDS(w): which chariots serve city w?
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CD(n): which cities are served by
chariot n?

s Look up entry for chariot n in Route Array

(say [x.y])
m [raverse nodes in tree T, starting at x and
ending at y
m Output all nodes encountered In traversal
m Query time is proportional to output size
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CONDS(w): which chariots serve city w?

m For each chariot ¢ in Route Array do
= Let route of c be [x,y];

m If wis an ancestor of x and w is a descendant
of y then

m Output c;
s Can we avoid examining all routes?
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Key Idea (ll): Caching

m At each node in the tree, keep a list of
chariot #'s whose bottom node is n.

e/E \S Chariot #| route

{ | [a,€e]
5( ~a {P) | [c,b]
¢ {7
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Key Idea (ll): Caching

m At each node in the tree, keep a list of
chariot #'s whose bottom node is n.

e/E \S Chariot #| route

{) | [a,e]
5{ ~a {1 | [c,b]
¢ {1
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CONDS(w): which chariots serve city w?

m For each descendant d of w do

m For each route c = [x,y] in list at d do

m [fwis a descendant of y then
= Output c;

s Query time is proportional to # of
descendants + size of all lists at d
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Sorting Lists

m Sort each list by decreasing length

E
/
a

€ IV, IILILI}

Stanford University
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| e,C]

1l e,b

IV e,a
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CONDS(w): which chariots serve city w?

m For each descendant d of w do

m For each route c = [x,y] in list at d do
m [fwis adescendant of y

m then
= Output c;

m else
m break

m Query time is proportional to size of
output + # of descendants
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Caching at All Nodes on Route

m Sort each list by decreasing length

H E
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Space Time Tradeoff

m Chariot # stored only at bottom node of the
route

= Space: O(|V| + |A])
= Query Time: O(|V| + |Output|)

m Chariot # stored at all nodes on route
= Space: O(|V| * |A])
= Query Time: O(|Output|)

m V Is the set of tree nodes, and A is the
Route Array.
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Key idea (lll): Caching Zones

m Divide tree into ZONES

m Nodes In Zone:
= Boundary nodes: lowest nodes in zone
m Interior nodes: all other nodes

= Query procedure:

= Visit only nodes below query node and in
the same zone as query node
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Caching Rule

m Boundary node: store all chariots serving
node

m Interior node: store all chariots whose
bottom node Is that node

m Algorithm: bottom-up, greedy zone
construction
= Query time: |[A | + |Z,| < (a + 1) [A)]
= Space requirements < [A| + |V]|/ a
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Constructing Zones ()

= Invariant: for any node v, [Z,|<a|A |+ 1,
where a is a design parameter.

m Query time for CONDS(v)
= O(|A/ + [Z,])
= O((a+ 1)|A,] + 1)
= O(|A])
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Constructing Zones (ll)

= Build zones bottom-up, making them as
large as possible without violating invariant

m V Is a leaf node, then make v a boundary
node

= V IS an interior node then

w (1 + >, ¢ chilgren) 14ul) > O |A [ + 1
= then make v a boundary node
m else make v an interior node
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a =1 (some caching)

m /ZONEes:

0 {a,b,c,d,e}
, 11,9,h},

{E}, {S}

15—a, h—a, g—a, f—c} u Boundary

nodes: a,
f,E, S
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a = >>(no caching)

m ZONnes:
{a,b,c,d,ef

,.9.h}, {E},
{S}
s Boundary

nodes: a,
E,S
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a = << (full caching)

E m ZONeEeSs:
S| 1_Lh[{S—a, h—a} every
o |Av| +11 g’ {S—a, h—a, g—a} node
\ 1 {S—a, h—a, g—a, f—c} . Eggggary

1 |e| {S—a, h—a, g—b, f—c, e—d} every
1|d|{S—a, h—a, g—b, f—c, e—d} hode
1 |c| {S—a, h—a, g—b, f—c}
1 |b| {S—a, h—a, g—b}
1 a {S—a,h—a}

Stanford University
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APT (I)

m Postdominator tree with bidirectional
edges
m dfs-number]v]: integer

= Used for ancestorship determination in
CONDS query

s Boundary?[v]. boolean

= [rue If v Is a boundary node, false otherwise
= Used in CONDS query
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N ()

m L[v]: list pf chariots #'s/control
dependences

= Boundary node: all chariots serving v (all
control dependences of v)

m Interior node: all chariots whose bottom node
Is v (all immmediate control dependences of v)

= Used in CONDS query
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Computational Complexity

= Query time: (a + 1) * output-size
m Space: |E| + |V|/a
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