Data-Flow Frameworks

Lattice-Theoretic Formulation
Meet-Over-Paths Solution
Monotonicity/Distributivity

Data-Flow Analysis Frameworks

® Generalizes and unifies each of the DFA
examples from previous lecture.

¢ ;

1. Direction D: forward or backward.

2. Domain V (possible values for IN, OUT).

3. Meet operator A (effect of path
confluence).

4. Transfer functions F (effect of passing
through a basic block).

Gary Kildall

This theory was the thesis at U. Wash.
of Gary Kildall.

@ Gary is better known for CP/M, the first
real PC operating system.

@ There is an interesting story.
* Google query: kildall cpm

+ www.freeenterpriseland.com/BOOK
/KILDALL.html

Semilattices

€ V and A form a semilattice if for all x,

y,and z in V:

1. X A X = X (/dempotence).

2. X AY =Y A X (commutativity).

3. XAy AZ)=(XXAY) A z(associativity).

4. Top element T such that for all x, TA X
= X.

5. Bottom element (optional) L such that
forall x, L AXx= L.

 Semilattice

€® V = power set of some set.

€ A = union,

@ Union is idempotent, commutative, and
associative.

€& What are the top and bottom
elements?

Partial Order for a Semilattice

® Sayx <yiffx Ay =X
@ Also, x<yiff x <yand x #y.

€ < isreally a partial order:

1. x<yandy <zimply x <z (proof in
text).

2. X<yandy <xiff x =y. X AY =
Xandy A X =Y. Thus, X=X A Yy =
Y AX=Y.

Axioms for Transfer Functions

1. Fincludes the identity function.
* Why needed? Constructions often
require introduction of an empty block.
2. F is closed under composition.

* Why needed?

e The concatenation of two blocks is a block.

e Transfer function for a block can be
constructed from individual statements.

Good News!

® The problems from the last lecture fit
the model.

. : Forward, meet = union, transfer
functions based on Gen and Kill.

¢ : Forward, meet = intersection,
transfer functions based on Gen and Kill.

. : Backward, meet = union, transfer
functions based on Use and Def.

: Reaching Definitions

& Direction D = forward.

®Domain V = set of all sets of definitions
in the flow graph.

€ A = union.
Functions F = all “gen-kill” functions of
the form , Where K

and G are sets of definitions (members
of V).

: Satisfies Axioms

€ Union on a power set forms a
semilattice (idempotent, commutative,
associative).

¢ letK=G = Q.
¢ : A little algebra.

10

: Partial Order

®ForRD's, S <TmeansSuU T =S.
@ Equivalently S = T.

* Seems “backward,” but that’s what the
definitions give you.
@ Intuition: < measures “ignorance.”

+ The more definitions we know about, the
less ignorance we have.

+ T = "“total ignorance.”

11

DFA Frameworks

0D, V, A, F).

@ A flow graph, with an associated
function f; in F for each block B.

@ A boundary value Vgyrry OF Veyr if D =
forward or backward, respectively.

12

[terative Algorithm (Forward)

OUT [entry] = Viyrrys

for (other blocks B) OUT[B]|] = T;
while (changes to any OUT)

for (each block B) {

13

[terative Algorithm (Backward)

€ Same thing --- just:
1. Swap IN and OUT everywhere.
2. Replace entry by exit.

14

What Does the Iterative
Algorithm Do?

& MFP (maximal fixedpoint) = result of
iterative algorithm.

€ MOP = meet over all paths from entry
to a given point, of the transfer function
along that path applied to Veyrry-

& IDEAL = ideal solution = meet over all
paths from entry to a point.

15

Transfer Function of a Path

foaC o F(fi(Venrry)): +)

16

Maximum Fixedpoint

® Fixedpoint = solution to the equations
used in iteration:

&® Maximum = any other solution is <

the result of the iterative algorithm
(MFP).

17

MOP and IDEAL

@ All solutions are really meets of the
result of starting with vgyrry @and
following some set of paths to the point
iIn question.

@ If we don't include at least the IDEAL
paths, we have an error.

€ But try not to include too many more.
+ Less “ignorance,” but we “know too much.”

18

MOP Versus IDEAL --- (1)

@ At each block B, MOP[B] < IDEAL[B].

+ I.e., the meet over many paths is < the
meet over a subset.

¢ ' X AY AZ<=<XAY because
XAYAZAXAY=XAYALZ

¢ : Anything not < IDEAL is not

safe, because there is some executable
path whose effect is not accounted for.

19

MOP Versus IDEAL --- (2)

¢ : any solution that is <

IDEAL accounts for all executable paths
(and maybe more paths), and is
therefore conservative (safe), even if
not accurate.

20

MFP Versus MOP --- (1)

¢ Is MFP < MOP?
+ If so, then since MOP < IDEAL, we have
MFP < IDEAL, and therefore MFP is safe.

€ Yes, but ... requires two assumptions
about the framework:

1. “Monotonicity.”

2. Finite height (no infinite chains
e <Xy < Xy < X).

21

MFP Versus MOP --- (2)

¢ : If we computed the MOP
directly, we would compose functions
along all paths, then take a big meet.

€ But the MFP (iterative algorithm)
alternates compositions and meets
arbitrarily.

22

Monotonicity

& A framework is monotone if the
functions respect <. That is:

¢
& Equivalently:
¢ . it is conservative to take a

meet before completing the
composition of functions.

23

Good News!

® The frameworks we've studied so far
are all monotone.

» Easy proof for functions in Gen-Kill form.

€ And they have finite height.

* Only a finite number of defs, variables, etc.
In any program.

24

Two Paths to B That Meet Early

In MFP, Values x and y
get combined too soon.

ENTRY

f(x)

.
Py
s
s
.
s
a®
“““
.
e
at
a®
s
.
s

f(y)

MOP considers paths
independently and
and combines at

the last possible
moment.

Since f(x A y) < f(x) A f(y), itis as if
we added nonexistent paths. 25

Distributive Frameworks

@ Strictly stronger than monotonicity is
the distributivity condition:

26

Even More Good News!

& All the Gen-Kill frameworks are
distributive.

@ If a framework is distributive, then
combining paths early doesn’t hurt.
+ MOP = MFP.

* That is, the iterative algorithm computes a
solution that takes into account all and
only the physical paths.

27

