
1

Partial Redundancy Elimination

Finding the Right Place to Evaluate
Expressions

Four Necessary Data-Flow Problems

2

Role of PRE

� Generalizes:

1. Moving loop-invariant computations
outside the loop.

2. Eliminating common subexpressions.

3. True partial redundancy: an expression is
sometimes available, sometimes not.

3

Convention

�Throughout, assume that neither
argument of an expression x+y is
modified unless we explicitly assign to x
or y.

�And of course, we assume x+y is the
only expression anyone would ever
want to compute. ☺

4

Example: Loop-Invariant Code
Motion

t = x+y

= x+y
= t

5

Example: Common
Subexpression Elimination

= x+y = x+y

= x+y

t = x+y t = x+y

= t

6

Example: True Partial
Redundancy

= x+y

= x+y

t = x+y t = x+y

= t

7

Modifying the Flow Graph

1. Add a new block along an edge.

� Only necessary if the edge enters a block
with several predecessors.

2. Duplicate blocks so an expression x+y
is evaluated only along paths where it
is needed.

8

Example: Node Splitting

t = x+y

= t

= x+y

= x+y

= x+y

t = x+y

9

Problem With Node-Splitting

�Can exponentiate the number of nodes.

�Our PRE algorithm needs to move code
to new blocks along edges, but will not
split blocks.

�Convention: All new instructions are
either inserted at the beginning of a
block or placed in a new block.

10

Da Plan Boss --- Da Plan

1. Determine for each expression the
earliest place(s) it can be computed while
still being sure that it will be used.

2. Postpone the expressions as long as
possible without introducing redundancy.

� We trade space for time --- an expression
can be computed in many places, but never
if it is already computed.

11

The Guarantee

�No expression is computed at a place
where it its value might have been
computed previously, and preserved
instead.

� Even along a subset of the possible paths.

12

More About the Plan

�We use four data-flow analyses, in
succession, plus some set operations on
the results of these analyses.

�After the first, each analysis uses the
results of the previous ones in a role
similar to that of Gen (for RD’s) or Use
(for LV’s).

13

Anticipated Expressions

�Expression x+y is anticipated at a
point if x+y is certain to be evaluated
along any computation path, before any
recomputation of x or y.

�An example of the fourth kind of DF
schema: backwards-intersection.

14

Example: Anticipated Expressions

= x+y = x+y

= x+y x+y is anticipated
here and could be
computed now rather
than later.

= x+y

x+y is
anticipated
here, but is
also available.
No computa-
tion is needed.

15

Computing Anticipated Expressions

�Use(B) = set of expressions x+y
evaluated in B before any assignment
to x or y.

�Def(B) = set of expressions one of
whose arguments is assigned in B.

16

Computing Anticipated
Expressions --- (2)

�Direction = backwards.

�Meet = intersection.

�Boundary condition: IN[exit] = ∅.

�Transfer function:

IN[B] = (OUT[B] – Def(B)) ∪ Use(B)

17

Example: Anticipated Expressions

= x+y

= x+y

Anticipated

Backwards; Intersection; IN[B] = (OUT[B] – Def(B)) ∪ Use(B)

18

“Available” Expressions

� Modification of the usual AE.

� x+y is “available” at a point if either:

1. It is available in the usual sense; i.e., it
has been computed and not killed, or

2. It is anticipated; i.e., it could be available
if we chose to precompute it there.

19

“Available” Expressions

�x+y is in Kill(B) if x or y is defined, and
x+y is not later recomputed (same as
previously).

�Confluence = intersection.

�Transfer function:

OUT[B] = (IN[B] ∪ INANTICIPATED[B]) – Kill(B)

20

Earliest Placement

�x+y is in Earliest[B] if it is anticipated at
the beginning of B but not “available”
there.

� That is: when we compute anticipated
expressions, x+y is in IN[B], but

�When we compute “available” expressions,
x+y is not in IN[B].

�I.e., x+y is anticipated at B, but not
anticipated at OUT of some predecessor.

21

Example: Available/Earliest

= x+y

= x+y

Anticipated

“Available”

Earliest = anticipated
but not available

Forward; Intersection; OUT[B] = (IN[B] ∪ INANTICIPATED[B]) – Kill(B)

22

Postponable Expressions

� Now, we need to delay the evaluation
of expressions as long as possible.

1. Not past the use of the expression.

2. Not so far that we wind up computing an
expression that is already evaluated.

� Note viewpoint: It is OK to use code
space if we save register use.

23

Postponable Expressions --- (2)

� x+y is postponable to a point p if on
every path from the entry to p:

1. There is a block B for which x+y is in
earliest[B], and

2. After that block, there is no use of x+y.

24

Postponable Expressions --- (3)

� Computed like “available” expressions,
with two differences:

1. In place of killing an expression
(assigning to one of its arguments):
Use(B), the set of expressions used in
block B.

2. In place of INANTICIPATED[B]: earliest[B].

25

Postponable Expressions --- (4)

�Confluence = intersection.

�Transfer function:

OUT[B] = (IN[B] ∪ earliest[B]) – Use(B)

26

Example: Postponable Expressions

= x+y = x+y

= x+y

Earliest

Postponable

Three places to
compute x+y

Forward; Intersection; OUT[B] = (IN[B] ∪ earliest[B]) – Use(B)

27

Latest Placement

�We want to postpone as far as possible.

�How do we compute the “winners” ---
the blocks such that we can postpone no
further?

�Remember --- postponing stops at a use
or at a block with another predecessor
where x+y is not postponable.

28

Latest[B]

� For x+y to be in latest[B]:

1. x+y is either in earliest[B] or in
INPOSTPONABLE[B].

� I.e., we can place the computation at B.

2. x+y is either used in B or there is some
successor of B for which (1) does not
hold.

� I.e., we cannot postpone further along all
branches.

29

Example: Latest

= x+y = x+y

= x+y

Earliest

Or Postponable
to beginning

Used

Or has a suc-
cessor not red.

Latest =
green
and red.

30

Final Touch --- Used Expressions

�We’re now ready to introduce a
temporary t to hold the value of
expression x+y everywhere.

�But there is a small glitch: t may be
totally unnecessary.

� E.g., x+y is computed in exactly one place.

31

Used Expressions --- (2)

�used[B] = expressions used along some
path from the exit of B.

�Backward flow analysis.

�Confluence = union.

�Transfer function:

IN[B] = (OUT[B] ∪ e-used[B]) – Latest(B)

� e-used = “expression is used in B.”

32

Example: Used

= x+y = x+y

= x+y

Recall: Latest

Used

Backwards; Union; IN[B] = (OUT[B] ∪ e-used[B]) – Latest(B)

33

Rules for Introducing Temporaries

1. If x+y is in both Latest[B] and
OUTUSED[B], introduce t = x+y at the

beginning of B.

2. If x+y is used in B, but either

1. Is not in Latest[B] or

2. Is in OUTUSED[B],

replace the use(s) of x+y by uses of t.

34

Example: Where is a
Temporary Used?

= x+y = x+y

= x+y

Recall: Latest

Recall OUTUSED

Create temp-
orary here

Use it here

But not here ---
x+y is in Latest and
not in OUTUSED

35

Example: Here’s Where It’s Used

= x+y
t = x+y

= t

= t

t = x+y

