Modification to Views Via Triggers
Oracle allows us to “intercept” a modification to a

view through an instead-of trigger.

Example

Likes(drinker, beer)
Sells(bar, beer, price)
Frequents(drinker, bar)

CREATE VIEW Synergy AS
SELECT Likes.drinker, Likes.beer,
Sells.bar
FROM Likes, Sells, Frequents
WHERE Likes.drinker =
Frequents.drinker AND
Likes.beer = Sells.beer AND
Sells.bar = Frequents.bar;

CREATE TRIGGER ViewTrig
INSTEAD OF INSERT ON Synergy
FOR EACH ROW
BEGIN
INSERT INTO Likes VALUES(
:new.drinker, :new.beer);
INSERT INTO Sells(bar, beer)
VALUES(:new.bar, :new.beer);
INSERT INTO Frequents VALUES(
:new.drinker, :new.bar);
END;

run

SQL Triggers

e Read in text.

e Some differences, including:

1.

The Oracle restriction about not
modifying the relation of the trigger or
other relations linked to it by constraints

is not present in SQL (but Oracle is real;
SQL is paper).

The action in SQL is a list of (restricted)

SQL statements, not a PL/SQL
statement.

PL/SQL

e Oracle’s version of PSM (Persistent, Stored
Modules).

[Use via sqlplus.

e A compromise between completely procedural
programming and SQL’s very high-level, but
limited statements.

e Allows local variables, loops, procedures,
examination of relations one tuple at a time.

e Rough form:

DECLARE

declarations
BEGIN

executable statements
END;

run;

e DECLARE portion is optional.

e Dot and run (or a slash in place of run;) are
needed to end the statement and execute 1it.

Simplest Form: Sequence of Modifications

Likes(drinker, beer)

BEGIN
INSERT INTO Likes
VALUES(’Sally’, ’Bud’);
DELETE FROM Likes
WHERE drinker = ’Fred’ AND
beer = ’Miller’;
END;

run;

Procedures

Stored database objects that use a PL/SQL
statement in their body.

Procedure Declarations

CREATE OR REPLACE PROCEDURE
<name> (<arglist>) AS
<declarations>
BEGIN
<PL/SQL statements>
END;

run;

e Argument list has name-mode-type triples.

[]

Mode: IN, OUT, or IN OUT for read-
only, write-only, read /write, respectively.

Types: standard SQL 4+ generic types like
NUMBER = any integer or real type.

Since types in procedures must match
their types in the DB schema, you should
generally use an expression of the form

relation.attribute’, TYPE

to capture the type correctly.

Example

A procedure to take a beer and price and add it to
Joe’s menu.

Sells(bar, beer, price)

CREATE PROCEDURE joeMenu(
b IN Sells.beer’,TYPE,
p IN Sells.price’,TYPE

) AS
BEGIN
INSERT INTO Sells
VALUES(’Joe’’s Bar’, b, p);
END;
run;

e Note “run” only stores the procedure; it
doesn’t execute the procedure.

Invoking Procedures

A procedure call may appear in the body of a
PL/SQL statement.

e Example:

BEGIN
joeMenu(’Bud’, 2.50);
joeMenu(’MooseDrool’, 5.00);
END;

run;

Assignment

Assign expressions to declared variables with :=.

Branches

IF <condition> THEN
<statement(s)>
ELSE
<statement(s)>
END IF;

e But in nests, use ELSIF in place of ELSE IF.

Loops

LOOP
EXIT WHEN <condition>

END LOOP;

10

Queries in PL/SQL

1. Single-row selects allow retrieval into a
variable of the result of a query that is
guaranteed to produce one tuple.

2. Cursors allow the retrieval of many tuples,
with the cursor and a loop used to process
each in turn.

11

Single-Row Select

e Select-from-where in PL/SQL must have an
INTO clause listing variables into which a tuple
can be placed.

e [t is an errorif the select-from-where returns
more than one tuple; you should have used a
Cursor.

Example

Find the price Joe charges for Bud (and drop it on
the floor).

Sells(bar, beer, price)

DECLARE
p Sells.price’,TYPE;
BEGIN
SELECT price
INTO p
FROM Sells
WHERE bar = ’Joe’’s Bar’ AND
beer = ’Bud’;
END;

run

12

Cursors

Declare by:

CURSOR <name> IS
select-from-where statement

e (Cursor gets each tuple from the relation
produced by the select-from-where, in turn,
using a fetch statement in a loop.

[1 Fetch statement:
FETCH <cursor name> INTO

variable list;
e Break the loop by a statement of the form:
EXIT WHEN <cursor name>%NOTFOUND;
[1 True when there are no more tuples to
get.

e Open and close the cursor with OPEN and
CLOSE.

13

Example

A procedure that examines the menu for Joe’s Bar
and raises by $1.00 all prices that are less than
$3.00.

Sells(bar, beer, price)

e This simple price-change algorithm can be
implemented by a single UPDATE statement,
but more complicated price changes could not.

14

CREATE PROCEDURE joeGouge () AS
theBeer Sells.beer),TYPE;
thePrice Sells.pricel,TYPE;
CURSOR c IS
SELECT beer, price
FROM Sells
WHERE bar = Joe’’s bar’;
BEGIN
OPEN c;
LOOP
FETCH c¢ INTO theBeer, thePrice;
EXIT WHEN c%NOTFOUND;
IF thePrice < 3.00 THEN
UPDATE Sells
SET price = thePrice + 1.00
WHERE bar = Joe’’s Bar’
AND beer = theBeer;
END IF;
END LOOP;
CLOSE c;
END;

run

15

Row Types

Anything (e.g., cursors, table names) that has
a tuple type can have its type captured with
%ROWTYPE.

e We can create temporary variables that have
tuple types and access their components with
dot.

e Handy when we deal with tuples with many
attributes.

16

Example
The same procedure with a tuple variable bp.

CREATE PROCEDURE joeGouge () AS
CURSOR ¢ IS
SELECT beer, price
FROM Sells
WHERE bar = Joe’’s bar’;
bp c%ROWTYPE;
BEGIN
OPEN c;
LOOP
FETCH c INTO bp;
EXIT WHEN c%NOTFQUND;
IF bp.price < 3.00 THEN
UDPATE Sells
SET price = bp.price + 1.00
WHERE bar = ’Joe’’s Bar’
AND beer = bp.beer;
END IF;
END LOQOP;
CLOSE c;
END;

run

17

