
Modi�cation to Views Via Triggers

Oracle allows us to \intercept" a modi�cation to a
view through an instead-of trigger.

Example

Likes(drinker, beer)

Sells(bar, beer, price)

Frequents(drinker, bar)

CREATE VIEW Synergy AS

SELECT Likes.drinker, Likes.beer,

Sells.bar

FROM Likes, Sells, Frequents

WHERE Likes.drinker =

Frequents.drinker AND

Likes.beer = Sells.beer AND

Sells.bar = Frequents.bar;

1

CREATE TRIGGER ViewTrig

INSTEAD OF INSERT ON Synergy

FOR EACH ROW

BEGIN

INSERT INTO Likes VALUES(

:new.drinker, :new.beer);

INSERT INTO Sells(bar, beer)

VALUES(:new.bar, :new.beer);

INSERT INTO Frequents VALUES(

:new.drinker, :new.bar);

END;

.

run

2

SQL Triggers

� Read in text.

� Some di�erences, including:

1. The Oracle restriction about not
modifying the relation of the trigger or
other relations linked to it by constraints
is not present in SQL (but Oracle is real;
SQL is paper).

2. The action in SQL is a list of (restricted)
SQL statements, not a PL/SQL
statement.

3

PL/SQL

� Oracle's version of PSM (Persistent, Stored
Modules).

✦ Use via sqlplus.

� A compromise between completely procedural
programming and SQL's very high-level, but
limited statements.

� Allows local variables, loops, procedures,
examination of relations one tuple at a time.

� Rough form:

DECLARE

declarations
BEGIN

executable statements
END;

.

run;

� DECLARE portion is optional.

� Dot and run (or a slash in place of run;) are
needed to end the statement and execute it.

4

Simplest Form: Sequence of Modi�cations

Likes(drinker, beer)

BEGIN

INSERT INTO Likes

VALUES('Sally', 'Bud');

DELETE FROM Likes

WHERE drinker = 'Fred' AND

beer = 'Miller';

END;

.

run;

5

Procedures

Stored database objects that use a PL/SQL
statement in their body.

Procedure Declarations

CREATE OR REPLACE PROCEDURE

<name>(<arglist>) AS

<declarations>
BEGIN

<PL/SQL statements>
END;

.

run;

6

� Argument list has name-mode-type triples.

✦ Mode: IN, OUT, or IN OUT for read-
only, write-only, read/write, respectively.

✦ Types: standard SQL + generic types like
NUMBER = any integer or real type.

✦ Since types in procedures must match
their types in the DB schema, you should
generally use an expression of the form

relation.attribute%TYPE

to capture the type correctly.

7

Example

A procedure to take a beer and price and add it to
Joe's menu.

Sells(bar, beer, price)

CREATE PROCEDURE joeMenu(

b IN Sells.beer%TYPE,

p IN Sells.price%TYPE

) AS

BEGIN

INSERT INTO Sells

VALUES('Joe''s Bar', b, p);

END;

.

run;

� Note \run" only stores the procedure; it
doesn't execute the procedure.

8

Invoking Procedures

A procedure call may appear in the body of a
PL/SQL statement.

� Example:

BEGIN

joeMenu('Bud', 2.50);

joeMenu('MooseDrool', 5.00);

END;

.

run;

9

Assignment

Assign expressions to declared variables with :=.

Branches

IF <condition> THEN

<statement(s)>
ELSE

<statement(s)>
END IF;

� But in nests, use ELSIF in place of ELSE IF.

Loops

LOOP

. . .

EXIT WHEN <condition>
. . .

END LOOP;

10

Queries in PL/SQL

1. Single-row selects allow retrieval into a
variable of the result of a query that is
guaranteed to produce one tuple.

2. Cursors allow the retrieval of many tuples,
with the cursor and a loop used to process
each in turn.

11

Single-Row Select

� Select-from-where in PL/SQL must have an
INTO clause listing variables into which a tuple
can be placed.

� It is an error if the select-from-where returns
more than one tuple; you should have used a
cursor.

Example

Find the price Joe charges for Bud (and drop it on
the
oor).

Sells(bar, beer, price)

DECLARE

p Sells.price%TYPE;

BEGIN

SELECT price

INTO p

FROM Sells

WHERE bar = 'Joe''s Bar' AND

beer = 'Bud';

END;

.

run

12

Cursors

Declare by:

CURSOR <name> IS

select-from-where statement

� Cursor gets each tuple from the relation
produced by the select-from-where, in turn,
using a fetch statement in a loop.

✦ Fetch statement:

FETCH <cursor name> INTO

variable list;

� Break the loop by a statement of the form:

EXIT WHEN <cursor name>%NOTFOUND;

✦ True when there are no more tuples to
get.

� Open and close the cursor with OPEN and
CLOSE.

13

Example

A procedure that examines the menu for Joe's Bar
and raises by $1.00 all prices that are less than
$3.00.

Sells(bar, beer, price)

� This simple price-change algorithm can be
implemented by a single UPDATE statement,
but more complicated price changes could not.

14

CREATE PROCEDURE joeGouge() AS

theBeer Sells.beer%TYPE;

thePrice Sells.price%TYPE;

CURSOR c IS

SELECT beer, price

FROM Sells

WHERE bar = 'Joe''s bar';

BEGIN

OPEN c;

LOOP

FETCH c INTO theBeer, thePrice;

EXIT WHEN c%NOTFOUND;

IF thePrice < 3.00 THEN

UPDATE Sells

SET price = thePrice + 1.00

WHERE bar = 'Joe''s Bar'

AND beer = theBeer;

END IF;

END LOOP;

CLOSE c;

END;

.

run

15

Row Types

Anything (e.g., cursors, table names) that has
a tuple type can have its type captured with
%ROWTYPE.

� We can create temporary variables that have
tuple types and access their components with
dot.

� Handy when we deal with tuples with many
attributes.

16

Example

The same procedure with a tuple variable bp.

CREATE PROCEDURE joeGouge() AS

CURSOR c IS

SELECT beer, price

FROM Sells

WHERE bar = 'Joe''s bar';

bp c%ROWTYPE;

BEGIN

OPEN c;

LOOP

FETCH c INTO bp;

EXIT WHEN c%NOTFOUND;

IF bp.price < 3.00 THEN

UDPATE Sells

SET price = bp.price + 1.00

WHERE bar = 'Joe''s Bar'

AND beer = bp.beer;

END IF;

END LOOP;

CLOSE c;

END;

.

run

17

