
Embedded SQL

Add to a conventional programming language (C
in our examples) certain statements that represent
SQL operations.

� Each embedded SQL statement introduced
with EXEC SQL.

� Preprocessor converts C + SQL to pure C.

✦ SQL statements become procedure calls.

1



Shared Variables

A special place for C declarations of variables that
are accessible to both SQL and C.

� Bracketed by

EXEC SQL BEGIN/END DECLARE SECTION;

� In Oracle Pro/C (not C++) the \brackets"
are optional.

� In C, variables used normally; in SQL, they
must be preceded by a colon.

2



Example

Find the price for a given beer at a given bar.

Sells(bar, beer, price)

EXEC SQL BEGIN DECLARE SECTION;

char theBar[21], theBeer[21];

float thePrice;

EXEC SQL END DECLARE SECTION;

. . .

/* assign to theBar and theBeer */

. . .

EXEC SQL SELECT price

INTO :thePrice

FROM Sells

WHERE beer = :theBeer AND

bar = :theBar;

. . .

3



Cursors

Similar to PL/SQL cursors, with some syntactic
di�erences.

Example

Print Joe's menu.

Sells(bar, beer, price)

EXEC SQL BEGIN DECLARE SECTION;

char theBeer[21];

float thePrice;

EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE c CURSOR FOR

SELECT beer, price

FROM Sells

WHERE bar = 'Joe''s Bar';

EXEC SQL OPEN CURSOR c;

while(1) {

EXEC SQL FETCH c

INTO :theBeer, :thePrice;

if(NOT FOUND) break;

/* format and print beer and price */

}

EXEC SQL CLOSE CURSOR c;

4



Oracle Vs. SQL Features

� SQL expects FROM in fetch-statement.

� SQL de�nes an array of characters SQLSTATE
that is set every time the system is called.

✦ Errors are signaled there.

✦ A failure for a cursor to �nd any more
tuples is signaled there.

✦ However, Oracle provides us with a
header �le sqlca.h that declares a
communication area and de�nes macros
to access it.

✦ In particular, NOT FOUND is a macro that
says \the no-tuple-found signal was set."

5



Dynamic SQL

Motivation:

� Embedded SQL is �ne for �xed applications,
e.g., a program that is used by a sales clerk to
book an airline seat.

� It fails if you try to write a program like
sqlplus, because you have compiled the
code for sqlplus before you see the SQL
statements typed in response to the SQL>
prompt.

� Two special statements of embedded SQL:

✦ PREPARE turns a character string into an
SQL query.

✦ EXECUTE executes that query.

6



Example: Sqlplus Sketch

EXEC SQL BEGIN DECLARE SECTION;

char query[MAX QUERY LENGTH];

EXEC SQL END DECLARE SECTION;

/* issue SQL> prompt */

/* read user's text into array query */

EXEC SQL PREPARE q FROM :query;

EXEC SQL EXECUTE q;

/* go back to reissue prompt */

� Once prepared, a query can be executed many
times.

✦ \Prepare" = optimize the query, e.g., �nd
a way to execute it using few disk-page
I/O's.

� Alternatively, PREPARE and EXECUTE can be
combined into:

EXEC SQL EXECUTE IMMEDIATE :query;

7



Call-Level Interfaces

A more modern approach to the host-
language/SQL connection is a call-level interface,
in which the C (or other language) program creates
SQL statements as character strings and passes
them to functions that are part of a library.

� Similar to what really happens in embedded
SQL implementations.

� Two major approaches: SQL/CLI (standard
of ODBC = open database connectivity) and
JDBC (Java database connectivity).

8



CLI

� In C, library calls let you create a statement
handle = struct in which you can place an
SQL statement.

✦ See text.

� Use SQLPrepare(myHandle,
<statement>,...) to make myHandle
represent the SQL statement in the second
argument.

� Use SQLExecute(myHandle) to execute that
statement.

Example

SQLPrepare(handle1, "SELECT beer, price

FROM Sells

WHERE bar = 'Joe''s Bar'",...);

SQLExecute(handle1);

9



Fetching Data

To obtain the data returned by an executed query,
we:

1. Bind variables to the component numbers of
the returned query.

✦ SQLBindCol applies to a handle, column
number, and variable, plus other
arguments (see text).

2. Fetch, using the handle of the query's
statement.

✦ SQLFetch applies to a handle.

Example

SQLBindCol(handle1, 1, SQL CHAR,

&theBar,...)

SQLBindCol(handle1, 2, SQL REAL,

&thePrice,...)

SQLExecute(handle1);

...

while(SQLFetch(handle1) !=

SQL NO DATA) f
...

10



JDBC

� Start with a Connection object, obtained from
the DBMS (see text).

� Method createStatement() returns an object
of class Statement (if there is no argument)
or PreparedStatement if there is an SQL
statement as argument.

Example

Statement stat1 = myCon.createStatement();

PreparedStatement stat2 =

myCon.createStatement(

"SELECT beer, price " +

"FROM Sells " +

"WHERE bar = 'Joe''s Bar'"

);

� myCon is a connection, stat1 is an \empty"
statement object, and stat2 is a (prepared)
statement object that has an SQL statement
associated.

11



Executing Statements

� JDBC distinguishes queries (statements that
return data) from updates (statements that
only a�ect the database).

� Methods executeQuery() and executeUpdate()
are used to execute these two kinds of SQL
statements.

✦ They must have an argument if applied
to a Statement, never if applied to a
PreparedStatement.

� When a query is executed, it returns an object
of class ResultSet.

Example

stat1.executeUpdate(

"INSERT INTO Sells " +

"VALUES('Brass Rail', 'Bud', 3.00)"

);

ResultSet Menu = stat2.executeQuery();

12



Getting the Tuples of a ResultSet

� Method Next() applies to a ResultSet and
moves a \cursor" to the next tuple in that set.

✦ Apply Next() once to get to the �rst
tuple.

✦ Next() returns FALSE if there are no more
tuples.

� While a given tuple is the current of the
cursor, you can get its ith component by
applying to a ResultSet a method of the form
getX(i), where X is the name for the type of
that component.

Example

while(Menu.Next()) f
theBeer = Menu.getString(1);

thePrice = Menu.getFloat(2);

...

g

13


