
ODL Subclasses

Follow name of subclass by colon and its
superclass.

Example: Ales are Beers with a Color

class Ales:Beers {

attribute string color;

}

� Objects of the Ales class acquire all the
attributes and relationships of the Beers class.

� While E/R entities can have manifestations in
a class and subclass, in ODL we assume each
object is a member of exactly one class.

1



Keys in ODL

Indicate with key(s) following the class name, and
a list of attributes forming the key.

� Several lists may be used to indicate several
alternative keys.

� Parentheses group members of a key, and also
group key to the declared keys.

� Thus, (key(a1; a2; : : : ; an)) = \one
key consisting of all n attributes."
(key a1; a2; : : : ; an) = \each ai is a key by
itself."

Example

class Beers

(key name)

{

attribute string name ...

� Remember : Keys are optional in ODL. The
\object ID" su�ces to distinguish objects that
have the same values in their elements.

2



Example: Multiple Multiattribute Keys

class Courses

(key (dept, number), (room, hours))

{

...

3



Translating ODL to Relations

1. Classes without relationships: like entity set,
but several new problems arise.

2. Classes with relationships:

a) Treat the relationship separately, as in
E/R.

b) Attach a many-one relationship to the
relation for the \many."

4



ODL Class Without Relationships

� Problem: ODL allows attribute types built
from structures and collection types.

� Structure: Make one attribute for each �eld.

� Set: make one tuple for each member of the
set.

✦ More than one set attribute? Make tuples
for all combinations.

� Problem: ODL class may have no key, but we
should have one in the relation to represent
\OID."

5



Example

class Drinkers (key name) {

attribute string name;

attribute Struct Addr

{string street, string city,

int zip} address;

attribute Set<string> phone;

}

name street city zip phone

n1 s1 c1 z1 p1
n1 s1 c1 z1 p2

� Surprise: the key for the class (name) is not
the key for the relation (name, phone).

✦ name in the class determines a unique
object, including a set of phones.

✦ name in the relation does not determine a
unique tuple.

✦ Since tuples are not identical to objects,
there is no inconsistency!

� BCNF violation: separate out name-phone.

6



ODL Relationships

� If the relationship is many-one from A to B,
put key of B attributes in the relation for class
A.

� If relationship is many-many, we'll have to
duplicate A-tuples as in ODL with set-valued
attributes.

✦ Wouldn't you really rather create a
separate relation for a many-many-
relationship?

✦ You'll wind up separating it anyway,
during BCNF decomposition.

7



Example

class Drinkers (key name) {

attribute string name;

attribute string addr;

relationship Set<Beers> likes

inverse Beers::fans;

relationship Beers favorite

inverse Beers::realFans;

relationship Drinkers husband

inverse wife;

relationship Drinkers wife

inverse husband;

relationship Set<Drinkers> buddies

inverse buddies;

}

Drinkers(name, addr, beerName, favBeer, wife,
buddy)

8



Decompose into 4NF

� FD's: name!addr favBeer wife

� MVD's name!!beerName, name!!buddy

� Resulting decomposition:

Drinkers(name, addr, favBeer, wife)

DrBeer(name, beer)

DrBuddy(name, buddy)

9



OQL

Motivation:

� Relational languages su�er from impedance

mismatch when we try to connect them to
conventional languages like C or C++.

✦ The data models of C and SQL are
radically di�erent, e.g. C does not have
relations, sets, or bags as primitive types;
C is tuple-at-a-time, SQL is relation-at-a-
time.

� OQL is an attempt by the OO community
to extend languages like C++ with SQL-like,
relation-at-a-time dictions.

10



OQL Types

� Basic types: strings, ints, reals, etc., plus class
names.

� Type constructors:

✦ Struct for structures.

✦ Collection types: set, bag, list, array.

� Like ODL, but no limit on the number of
times we can apply a type constructor.

� Set(Struct()) and Bag(Struct()) play special
roles akin to relations.

11



OQL Uses ODL as its Schema-De�nition

Portion

� For every class we can declare an extent =
name for the current set of objects of the
class.

✦ Remember to refer to the extent, not the
class name, in queries.

12



class Bar

(extent Bars)

{

attribute string name;

attribute string addr;

relationship Set<Sell> beersSold

inverse Sell::bar;

}

class Beer

(extent Beers)

{

attribute string name;

attribute string manf;

relationship Set<Sell> soldBy

inverse Sell::beer;

}

class Sell

(extent Sells)

{

attribute float price;

relationship Bar bar

inverse Bar::beersSold;

relationship Beer beer

inverse Beer::soldBy;

}

13



Path Expressions

Let x be an object of class C.

� If a is an attribute of C, then x:a = the value
of a in the x object.

� If r is a relationship of C, then x:r = the
value to which x is connected by r.

✦ Could be an object or a collection of
objects, depending on the type of r.

� If m is a method of C, then x:m(� � �) is the
result of applying m to x.

14



Examples

Let s be a variable whose type is Sell.

� s.price = the price in the object s.

� s.bar.addr = the address of the bar
mentioned in s.

✦ Note: cascade of dots OK because s.bar
is an object, not a collection.

Example of Illegal Use of Dot

b.beersSold.price, where b is a Bar object.

� Why illegal? Because b.beersSold is a set of
objects, not a single object.

15



OQL Select-From-Where

SELECT <list of values>
FROM <list of collections and

typical members>
WHERE <condition>

� Collections in FROM can be:

1. Extents.

2. Expressions that evaluate to a collection.

� Following a collection is a name for a typical
member, optionally preceded by AS.

Example

Get the menu at Joe's.

SELECT s.beer.name, s.price

FROM Sells s

WHERE s.bar.name = "Joe's Bar"

� Notice double-quoted strings in OQL.

16



Example

Another way to get Joe's menu, this time focusing
on the Bar objects.

SELECT s.beer.name, s.price

FROM Bars b, b.beersSold s

WHERE b.name = "Joe's Bar"

� Notice that the typical object b in the �rst
collection of FROM is used to help de�ne the
second collection.

Typical Usage

� If x is an object, you can extend the path
expression, like s or s.beer in s.beer.name.

� If x is a collection, you use it in the FROM list,
like b.beersSold above, if you want to access
attributes of x.

17



Tailoring the Type of the Result

� Default: bag of structs, �eld names taken from
the ends of path names in SELECT clause.

Example

SELECT s.beer.name, s.price

FROM Bars b, b.beersSold s

WHERE b.name = "Joe's Bar"

has result type:

Bag(Struct(

name: string,

price: real

))

18



Rename Fields

Pre�x the path with the desired name and a colon.

Example

SELECT beer: s.beer.name, s.price

FROM Bars b, b.beersSold s

WHERE b.name = "Joe's Bar"

has type:

Bag(Struct(

beer: string,

price: real

))

19



Change the Collection Type

� Use SELECT DISTINCT to get a set of structs.

Example

SELECT DISTINCT s.beer.name, s.price

FROM Bars b, b.beersSold s

WHERE b.name = "Joe's Bar"

� Use ORDER BY clause to get a list of structs.

Example

joeMenu =

SELECT s.beer.name, s.price

FROM Bars b, b.beersSold s

WHERE b.name = "Joe's Bar"

ORDER BY s.price ASC

� ASC = ascending (default); DESC = descending.

� We can extract from a list as if it were an
array, e.g.

cheapest = joeMenu[1].name;

20


