
Subqueries

� Used mainly in FROM clauses and with
quanti�ers EXISTS and FORALL.

Example: Subquery in FROM

Find the manufacturers of the beers served at
Joe's.

SELECT DISTINCT b.manf

FROM (

SELECT s.beer

FROM Sells s

WHERE s.bar.name = "Joe's Bar"

) b

1

Quanti�ers

� Boolean-valued expressions for use in WHERE-
clauses.

FOR ALL x IN <collection> :

<condition>

EXISTS x IN <collection> :

<condition>

� The expression has value TRUE if the condition
is true for all (resp. at least one) elements of
the collection.

Example

Find all bars that sell some beer for more than $5.

SELECT b.name

FROM Bars b

WHERE EXISTS s IN b.beersSold :

s.price > 5.00

Problem

How would you �nd the bars that only sold beers
for more than $5?

2

Example

Find the bars such that the only beers they sell for
more than $5 are manufactured by Pete's.

SELECT b.name

FROM Bars b

WHERE FOR ALL be IN (

SELECT s.beer

FROM b.beersSold s

WHERE s.price > 5.00

) :

be.manf = "Pete's"

3

Extraction of Collection Elements

a) A collection with a single member: Extract
the member with ELEMENT.

Example

Find the price Joe charges for Bud and put the
result in a variable p.

p = ELEMENT(

SELECT s.price

FROM Sells s

WHERE s.bar.name = "Joe's Bar"

AND s.beer.name = "Bud"

)

4

b) Extracting all elements of a collection, one at
a time:

1. Turn the collection into a list.

2. Extract elements of a list with
<list name>[i].

Example

Print Joe's menu, in order of price, with beers of
the same price listed alphabetically.

L =

SELECT s.beer.name, s.price

FROM Sells s

WHERE s.bar.name = "Joe's Bar"

ORDER BY s.price, s.beer.name;

printf("Beer\tPrice\n\n");

for(i=1; i<=COUNT(L); i++)

printf("%s\t%f\n",

L[i].name,

L[i].price

);

5

Aggregation

The �ve operators avg, min, max, sum, count
apply to any collection, as long as the operators
make sense for the element type.

Example

Find the average price of beer at Joe's.

x = AVG(

SELECT s.price

FROM Sells s

WHERE s.bar.name = "Joe's Bar"

);

� Note coersion: result of SELECT is technically
a bag of 1-�eld structs, which is identi�ed with
the bag of the values of that �eld.

6

Grouping

Recall SQL grouping, for example:

SELECT bar, AVG(price)

FROM Sells

GROUP BY bar;

� Is the bar value the \name" of the group, or
the common value for the bar component of
all tuples in the group?

� In SQL it doesn't matter, but in OQL, you
can create groups from the values of any
function(s), not just attributes.

✦ Thus, groups are identi�ed by common
values, not \name."

✦ Example: group by �rst letter of bar
names (method needed).

7

Outline of OQL Group-By

Collection
De�ned by

FROM, WHERE

Collection with
function values
and partition

Group by values
of function(s)

Terms from
SELECT clause

Output
collection

8

Example

Find the average price of beer at each bar.

SELECT barName, avgPrice: AVG(

SELECT p.s.price

FROM partition p

)

FROM Sells s

GROUP BY barName: s.bar.name

1. Initial collection = Sells.

✦ But technically, it is a bag of structs of
the form

Struct(s: s1)

Where s1 is a Sell object. Note, the lone
�eld is named s; in general, there are
�elds for all of the \typical objects" in
the FROM clause.

9

2. Intermediate collection:

✦ One function: s.bar.name maps Sell
objects s to the value of the name of the
bar referred to by s.

✦ Collection is a set of structs of type:

Struct{barName: string,

partition: Set<

Struct{s: Sell}

>

}

For example:

Struct(barName = "Joe's Bar",

partition = fs1; : : : ; sng)

where s1; : : : ; sn are all the structs with
one �eld, named s, whose value is one of
the Sell objects that represent Joe's Bar
selling some beer.

10

3. Output collection: consists of beer-average
price pairs, one for each struct in the
intermediate collection.

✦ Type of structures in the output:

Struct{barName: string,

avgPrice: real}

✦ Note that in the subquery of the SELECT
clause:

SELECT barName, avgPrice: AVG(

SELECT p.s.price

FROM partition p

)

We let p range over all structs in
partition. Each of these structs contains
a single �eld named s and has a Sell

object as its value. Thus, p.s.price
extracts the price from one of the Sell
objects.

✦ Typical output struct:

Struct(barName = "Joe's Bar",

avgPrice = 2.83)

11

Another, Less Typical Example

Find, for each beer, the number of bars that charge
a \low" price (� 2:00) and a \high" price (� 4:00)
for that beer.

� Strategy: group by three things:

1. The beer name,

2. A boolean function that is true i� the
price is low.

3. A boolean function that is true i� the
price is high.

12

The Query

SELECT beerName, low, high,

count: COUNT(partition)

FROM Beers b, b.soldBy s

GROUP BY beerName: b.name,

low: s.price <= 2.00,

high: s.price >= 4.00

1. Initial collection: Pairs (b; s), where b
is a Beer object, and s is a Sell object
representing the sale of that beer at some bar.

✦ Type of collection members:

Struct{b: Beer, s: Sell}

13

2. Intermediate collection: Quadruples consisting
of a beer name, booleans telling whether this
group is for high, low, or neither prices for
that beer, and the partition for that group.

✦ The partition is a set of structs of the
type:

Struct{b: Beer, s: Sell}

A typical value:

Struct(b: "Bud" object,
s: a Sell object involving Bud)

14

✦ Type of quadruples in the intermediate
collection:

Struct{

beerName: string,

low: boolean,

high: boolean,

partition: Set<Struct{

b: Beer,

s: Sell

}>

}

Typical structs in intermediate collection:

beerName low high partition

Bud TRUE FALSE Slow
Bud FALSE TRUE Shigh
Bud FALSE FALSE Smid

� � � � � � � � � � � �

where Slow Shigh, and Smid are the sets of beer-
sells pairs (b; s) where the beer is Bud and s has,
respectively, a low (� 2:00), high (� 4:00) and
medium (between 2.00 and 4.00) price.

� Note the partition with low = high = TRUE

must be empty and will not appear.

15

3. Output collection: The �rst three components
of each group's struct are copied to the
output, and the last (partition) is counted.
The result:

beerName low high count

Bud TRUE FALSE 27
Bud FALSE TRUE 14
Bud FALSE FALSE 36
� � � � � � � � � � � �

16

