
Plan

1. Information integration: important new
application that motivates what follows.

2. Semistructured data: a new data model
designed to cope with problems of information
integration.

3. XML: a new Web standard that is essentially
semistructured data.

4. XQUERY: an emerging standard query
language for XML data.

1

Information Integration

Problem: related data exists in many places. They
talk about the same things, but di�er in model,
schema, conventions (e.g., terminology).

Example

In the real world, every bar has its own database.

� Some may have relations like beer-price; others
have an MS-word �le from which the menu is
printed.

� Some keep phones of manufacturers but not
addresses.

� Some distinguish beers and ales; others do not.

2

Two approaches

1. Warehousing : Make copies of information at
each data source centrally.

✦ Reconstruct data daily/weekly/monthly,
but do not try to keep it up-to-date.

2. Mediation: Create a view of all information,
but do not make copies.

✦ Answer queries by sending appropriate
queries to sources.

3

Warehousing

Wrapper Wrapper

Combiner

DB1 DB2

Warehouse

user
query

result

4

Mediation

Wrapper Wrapper

DB1 DB2

Mediator

query result query result

result
queryquery

result

query result

5

Semistructured Data

� A di�erent kind of data model, more suited
to information-integration applications than
either relational or OO.

✦ Think of \objects," but with the type of
an object its own business rather than the
business of the class to which it belongs.

✦ Allows information from several sources,
with related but di�erent properties, to be
�t together in one whole.

� Major application: XML documents.

6

Graph Representation of Semistructured
Data

� Nodes = objects.

� Nodes connected in a general rooted graph
structure.

� Labels on arcs.

� Atomic values on leaf nodes.

� Big deal: no restriction on labels (roughly =
attributes).

✦ Zero, one, or many children of a given
label type are all OK.

7

Example

M'lob
1995 Gold

Bud A.B.

prize

awardyear

name

manfmanf

beer
beerbar

Joe's Maple

name addr

servedAt

name

8

XML (Extensible Markup Language)

HTML uses tags for formatting (e.g., \italic").
XML uses tags for semantics (e.g., \this is an
address").

� Two modes:

1. Well-formed XML allows you to invent
your own tags, much like labels in
semistructured data.

2. Valid XML involves a DTD (Document
Type De�nition) that tells the labels and
gives a grammar for how they may be
nested.

9

Well-Formed XML

1. Declaration = <? ... ?>.

✦ Normal declaration is <? XML VERSION =

"1.0" STANDALONE = "yes" ?>

✦ \Standalone" means that there is no DTD
speci�ed.

2. Root tag surrounds the entire balance of the
document.

✦ <FOO> is balanced by </FOO>, as in
HTML.

3. Any balanced structure of tags OK.

✦ Option of tags that don't require balance,
like <P> in HTML.

10

Example

<?XML VERSION = "1.0" STANDALONE = "yes"?>

<BARS>

<BAR><NAME>Joe's Bar</NAME>

<BEER><NAME>Bud</NAME>

<PRICE>2.50</PRICE></BEER>

<BEER><NAME>Miller</NAME>

<PRICE>3.00</PRICE></BEER>

</BAR>

<BAR> ...

</BARS>

11

Document Type De�nitions (DTD)

Essentially a grammar describing the legal nesting
of tags.

� Intention is that DTD's will be standards for
a domain, used by everyone preparing or using
data in that domain.

✦ Example: a DTD for describing protein
structure; a DTD for describing bar
menus, etc.

Gross Structure of a DTD

<!DOCTYPE root tag [

<!ELEMENT name (components)>

more elements

]>

12

Elements of a DTD

An element is a name (its tag) and a parenthesized
description of tags within an element.

✦ Special case: (#PCDATA) after an element
name means it is text.

Example

<!DOCTYPE Bars [

<!ELEMENT BARS (BAR*)>

<!ELEMENT BAR (NAME, BEER+)>

<!ELEMENT NAME (#PCDATA)>

<!ELEMENT BEER (NAME, PRICE)>

<!ELEMENT PRICE (#PCDATA)>

]>

13

Components

� Each element name is a tag.

� Its components are the tags that appear
nested within, in the order speci�ed.

� Multiplicity of a tag is controlled by:

a) * = zero or more of.

b) + = one or more of.

c) ? = zero or one of.

� In addition, | = \or."

14

Using a DTD

1. Set STANDALONE = "no".

2. Either

a) Include the DTD as a preamble, or

b) Follow the XML tag by a DOCTYPE

declaration with the root tag, the keyword
SYSTEM, and a �le where the DTD can be
found.

15

Example of (a)

<?XML VERSION = "1.0" STANDALONE = "no"?>

<!DOCTYPE Bars [

<!ELEMENT BARS (BAR*)>

<!ELEMENT BAR (NAME, BEER+)>

<!ELEMENT NAME (#PCDATA)>

<!ELEMENT BEER (NAME, PRICE)>

<!ELEMENT PRICE (#PCDATA)>

]>

<BARS>

<BAR><NAME>Joe's Bar</NAME>

<BEER><NAME>Bud</NAME>

<PRICE>2.50</PRICE></BEER>

<BEER><NAME>Miller</NAME>

<PRICE>3.00</PRICE></BEER>

</BAR>

<BAR> ...

</BARS>

16

Example of (b)

Suppose our bars DTD is in �le bar.dtd .

<?XML VERSION = "1.0" STANDALONE = "no"?>

<!DOCTYPE Bars SYSTEM "bar.dtd">

<BARS>

<BAR><NAME>Joe's Bar</NAME>

<BEER><NAME>Bud</NAME>

<PRICE>2.50</PRICE></BEER>

<BEER><NAME>Miller</NAME>

<PRICE>3.00</PRICE></BEER>

</BAR>

<BAR> ...

</BARS>

17

Attribute Lists

Opening tags can have \arguments" that appear
within the tag, in analogy to constructs like
 in HTML.

� Keyword !ATTLIST introduces a list of
attributes and their data types.

Example

<!ELEMENT BAR (NAME BEER*)>

<!ATTLIST BAR

type = "sushi"|"sports"|"other"

>

� Bar objects can have a (bar) type, and the
value of that type is limited to the three
strings shown.

� Example of use:

<BAR type = "sushi">

. . .

</BAR>

18

ID's and IDREF's

These are pointers from one object to another,
analogous to NAME = "foo" and HREF = "#foo" in
HTML.

� Allows the structure of an XML document to
be a general graph, rather than just a tree.

� An attribute of type ID can be used to give
the object (string between opening and closing
tags) a unique string identi�er.

� An attribute of type IDREF refers to some
object by its identi�er.

✦ Also IDREFS to allow multiple object
references within one tag.

19

Example

Let us include in our Bars document type elements
that are the manufacturers of beers, and have each
beer object link, with an IDREF, to the proper
manufacturer object.

<!DOCTYPE Bars [

<!ELEMENT BARS (BAR*, MANF*)>

<!ELEMENT BAR (NAME, BEER+)>

<!ELEMENT NAME (#PCDATA)>

<!ELEMENT MANF (ADDR)>

<!ATTLIST MANF (name ID)>

<!ELEMENT ADDR (#PCDATA)>

<!ELEMENT BEER (NAME, PRICE)>

<!ATTLIST BEER (manf = IDREF)>

<!ELEMENT PRICE (#PCDATA)>

]>

20

XQUERY

Emerging standard for querying XML documents.
Basic form:

FOR <variables ranging over

sets of elements>

WHERE <condition>

RETURN <set of elements>;

� Sets of elements described by paths, consisting
of:

1. URL, if necessary.

2. Element names forming a path in
the semistructured data graph, e.g.,
//BAR/NAME = \start at any BAR node and
go to a NAME child."

3. Ending condition of the form
[<condition about subelements,

attributes (preceded by @), and

values>].

21

Example

The �le http://www.stanford.edu/bars.xml:

<?XML VERSION = "1.0" STANDALONE = "no"?>

<!DOCTYPE Bars SYSTEM "bar.dtd">

<BARS>

<BAR type = "sports">

<NAME>Joe's Bar</NAME>

<BEER><NAME>Bud</NAME>

<PRICE>2.50</PRICE></BEER>

<BEER><NAME>Miller</NAME>

<PRICE>3.00</PRICE></BEER>

</BAR>

<BAR type = "sushi">

<NAME>Homma's</NAME>

<BEER><NAME>Sapporo</NAME>

<PRICE>4.00</PRICE></BEER>

</BAR> ...

</BARS>

22

XQUERY Query

Find the prices charged for Bud by sports bars
that serve Miller.

FOR $ba IN document("http://www.stan-

ford.edu/bars.html")

//BAR[@type = "sports"],

$be IN $ba/BEER[NAME = "Bud"]

WHERE $ba/BEER/[NAME = "Miller"]

RETURN $be/PRICE;

23

