
Plan

1. Information integration: important new
application that motivates what follows.

2. Semistructured data: a new data model
designed to cope with problems of information
integration.

3. XML: a new Web standard that is essentially
semistructured data.

4. XQUERY: an emerging standard query
language for XML data.
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Information Integration

Problem: related data exists in many places. They
talk about the same things, but di�er in model,
schema, conventions (e.g., terminology).

Example

In the real world, every bar has its own database.

� Some may have relations like beer-price; others
have an MS-word �le from which the menu is
printed.

� Some keep phones of manufacturers but not
addresses.

� Some distinguish beers and ales; others do not.
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Two approaches

1. Warehousing : Make copies of information at
each data source centrally.

✦ Reconstruct data daily/weekly/monthly,
but do not try to keep it up-to-date.

2. Mediation: Create a view of all information,
but do not make copies.

✦ Answer queries by sending appropriate
queries to sources.
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Mediation
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Semistructured Data

� A di�erent kind of data model, more suited
to information-integration applications than
either relational or OO.

✦ Think of \objects," but with the type of
an object its own business rather than the
business of the class to which it belongs.

✦ Allows information from several sources,
with related but di�erent properties, to be
�t together in one whole.

� Major application: XML documents.
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Graph Representation of Semistructured
Data

� Nodes = objects.

� Nodes connected in a general rooted graph
structure.

� Labels on arcs.

� Atomic values on leaf nodes.

� Big deal: no restriction on labels (roughly =
attributes).

✦ Zero, one, or many children of a given
label type are all OK.
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XML (Extensible Markup Language)

HTML uses tags for formatting (e.g., \italic").
XML uses tags for semantics (e.g., \this is an
address").

� Two modes:

1. Well-formed XML allows you to invent
your own tags, much like labels in
semistructured data.

2. Valid XML involves a DTD (Document
Type De�nition) that tells the labels and
gives a grammar for how they may be
nested.
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Well-Formed XML

1. Declaration = <? ... ?>.

✦ Normal declaration is <? XML VERSION =

"1.0" STANDALONE = "yes" ?>

✦ \Standalone" means that there is no DTD
speci�ed.

2. Root tag surrounds the entire balance of the
document.

✦ <FOO> is balanced by </FOO>, as in
HTML.

3. Any balanced structure of tags OK.

✦ Option of tags that don't require balance,
like <P> in HTML.
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Example

<?XML VERSION = "1.0" STANDALONE = "yes"?>

<BARS>

<BAR><NAME>Joe's Bar</NAME>

<BEER><NAME>Bud</NAME>

<PRICE>2.50</PRICE></BEER>

<BEER><NAME>Miller</NAME>

<PRICE>3.00</PRICE></BEER>

</BAR>

<BAR> ...

</BARS>
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Document Type De�nitions (DTD)

Essentially a grammar describing the legal nesting
of tags.

� Intention is that DTD's will be standards for
a domain, used by everyone preparing or using
data in that domain.

✦ Example: a DTD for describing protein
structure; a DTD for describing bar
menus, etc.

Gross Structure of a DTD

<!DOCTYPE root tag [

<!ELEMENT name (components)>

more elements

]>
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Elements of a DTD

An element is a name (its tag) and a parenthesized
description of tags within an element.

✦ Special case: (#PCDATA) after an element
name means it is text.

Example

<!DOCTYPE Bars [

<!ELEMENT BARS (BAR*)>

<!ELEMENT BAR (NAME, BEER+)>

<!ELEMENT NAME (#PCDATA)>

<!ELEMENT BEER (NAME, PRICE)>

<!ELEMENT PRICE (#PCDATA)>

]>
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Components

� Each element name is a tag.

� Its components are the tags that appear
nested within, in the order speci�ed.

� Multiplicity of a tag is controlled by:

a) * = zero or more of.

b) + = one or more of.

c) ? = zero or one of.

� In addition, | = \or."
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Using a DTD

1. Set STANDALONE = "no".

2. Either

a) Include the DTD as a preamble, or

b) Follow the XML tag by a DOCTYPE

declaration with the root tag, the keyword
SYSTEM, and a �le where the DTD can be
found.
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Example of (a)

<?XML VERSION = "1.0" STANDALONE = "no"?>

<!DOCTYPE Bars [

<!ELEMENT BARS (BAR*)>

<!ELEMENT BAR (NAME, BEER+)>

<!ELEMENT NAME (#PCDATA)>

<!ELEMENT BEER (NAME, PRICE)>

<!ELEMENT PRICE (#PCDATA)>

]>

<BARS>

<BAR><NAME>Joe's Bar</NAME>

<BEER><NAME>Bud</NAME>

<PRICE>2.50</PRICE></BEER>

<BEER><NAME>Miller</NAME>

<PRICE>3.00</PRICE></BEER>

</BAR>

<BAR> ...

</BARS>
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Example of (b)

Suppose our bars DTD is in �le bar.dtd .

<?XML VERSION = "1.0" STANDALONE = "no"?>

<!DOCTYPE Bars SYSTEM "bar.dtd">

<BARS>

<BAR><NAME>Joe's Bar</NAME>

<BEER><NAME>Bud</NAME>

<PRICE>2.50</PRICE></BEER>

<BEER><NAME>Miller</NAME>

<PRICE>3.00</PRICE></BEER>

</BAR>

<BAR> ...

</BARS>
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Attribute Lists

Opening tags can have \arguments" that appear
within the tag, in analogy to constructs like
<A HREF = ...> in HTML.

� Keyword !ATTLIST introduces a list of
attributes and their data types.

Example

<!ELEMENT BAR (NAME BEER*)>

<!ATTLIST BAR

type = "sushi"|"sports"|"other"

>

� Bar objects can have a (bar) type, and the
value of that type is limited to the three
strings shown.

� Example of use:

<BAR type = "sushi">

. . .

</BAR>
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ID's and IDREF's

These are pointers from one object to another,
analogous to NAME = "foo" and HREF = "#foo" in
HTML.

� Allows the structure of an XML document to
be a general graph, rather than just a tree.

� An attribute of type ID can be used to give
the object (string between opening and closing
tags) a unique string identi�er.

� An attribute of type IDREF refers to some
object by its identi�er.

✦ Also IDREFS to allow multiple object
references within one tag.
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Example

Let us include in our Bars document type elements
that are the manufacturers of beers, and have each
beer object link, with an IDREF, to the proper
manufacturer object.

<!DOCTYPE Bars [

<!ELEMENT BARS (BAR*, MANF*)>

<!ELEMENT BAR (NAME, BEER+)>

<!ELEMENT NAME (#PCDATA)>

<!ELEMENT MANF (ADDR)>

<!ATTLIST MANF (name ID)>

<!ELEMENT ADDR (#PCDATA)>

<!ELEMENT BEER (NAME, PRICE)>

<!ATTLIST BEER (manf = IDREF)>

<!ELEMENT PRICE (#PCDATA)>

]>
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XQUERY

Emerging standard for querying XML documents.
Basic form:

FOR <variables ranging over

sets of elements>

WHERE <condition>

RETURN <set of elements>;

� Sets of elements described by paths, consisting
of:

1. URL, if necessary.

2. Element names forming a path in
the semistructured data graph, e.g.,
//BAR/NAME = \start at any BAR node and
go to a NAME child."

3. Ending condition of the form
[<condition about subelements,

attributes (preceded by @), and

values>].
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Example

The �le http://www.stanford.edu/bars.xml:

<?XML VERSION = "1.0" STANDALONE = "no"?>

<!DOCTYPE Bars SYSTEM "bar.dtd">

<BARS>

<BAR type = "sports">

<NAME>Joe's Bar</NAME>

<BEER><NAME>Bud</NAME>

<PRICE>2.50</PRICE></BEER>

<BEER><NAME>Miller</NAME>

<PRICE>3.00</PRICE></BEER>

</BAR>

<BAR type = "sushi">

<NAME>Homma's</NAME>

<BEER><NAME>Sapporo</NAME>

<PRICE>4.00</PRICE></BEER>

</BAR> ...

</BARS>
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XQUERY Query

Find the prices charged for Bud by sports bars
that serve Miller.

FOR $ba IN document("http://www.stan-

ford.edu/bars.html")

//BAR[@type = "sports"],

$be IN $ba/BEER[NAME = "Bud"]

WHERE $ba/BEER/[NAME = "Miller"]

RETURN $be/PRICE;
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