Relational Model

- Table = relation.
- Column headers = attributes.
- Row = tuple

name	manf
WinterBrew BudLite 	Pete's A.B.

Beers

- Relation schema = name(attributes) + other structure info., e.g., keys, other constraints. Example: Beers(name, manf).
 - Order of attributes is arbitrary, but in practice we need to assume the order given in the relation schema.
- Relation instance is current set of rows for a relation schema.
- $Database\ schema = collection\ of\ relation$ schemas.

Why Relations?

- Very simple model.
- Often a good match for the way we think about our data.
- Abstract model that underlies SQL, the most important language in DBMS's today.
 - ♦ But SQL uses "bags," while the abstract relational model is set-oriented.

Relational Design

Simplest approach (not always best): convert each E.S. to a relation and each relationship to a relation.

Entity Set \rightarrow Relation

E.S. attributes become relational attributes.

Becomes:

Beers(name, manf)

E/R Relationships \rightarrow Relations

Relation has attribute for *key* attributes of each E.S. that participates in the relationship.

- Add any attributes that belong to the relationship itself.
- Renaming attributes OK.
 - Essential if multiple roles for an E.S.

Likes(drinker, beer)
Favorite(drinker, beer)
Buddies(name1, name2)
Married(husband, wife)

Combining Relations

Sometimes it makes sense to combine relations.

• Common case: Relation for an E.S. E plus the relation for some many-one relationship from E to another E.S.

Example

Combine Drinker(name, addr) with Favorite(drinker, beer) to get Drinker1(name, addr, favBeer).

- Danger in pushing this idea too far: redundancy.
- e.g., combining Drinker with Likes causes the drinker's address to be repeated viz.:

name	addr	beer
Sally	123 Maple	Bud
Sally	123 Maple	Miller

• Notice the difference: Favorite is many-one; Likes is many-many.

Weak Entity Sets, Relationships \rightarrow Relations

- Relation for a weak E.S. must include its full key (i.e., attributes of related entity sets) as well as its own attributes.
- A supporting (double-diamond) relationship yields a relation that is actually redundant and should be deleted from the database schema.

Hosts(hostName)
Logins(loginName, hostName)
At(loginName, hostName, hostName2)

- In At, hostName and hostName2 must be the same host, so delete one of them.
- Then, Logins and At become the same relation; delete one of them.
- In this case, Hosts' schema is a subset of Logins' schema. Delete Hosts?

$Subclasses \rightarrow Relations$

Three approaches:

- 1. Object-oriented: each entity is in one class. Create a relation for each class, with all the attributes for that class.
 - ♦ Don't forget inherited attributes.
- 2. E/R style: an entity is in a network of classes related by isa. Create one relation for each E.S.
 - An entity is represented in the relation for each subclass to which it belongs.
 - Relation has only the attributes attached to that E.S. + key.
- 3. Use nulls. Create one relation for the root class or root E.S., with all attributes found anywhere in its network of subclasses.
 - Put NULL in attributes not relevant to a given entity.

OO-Style

name	manf	color	
SummerBrew	Pete's	dark	
Ales			

E/R Style

name	manf	
Bud SummerBrew	A.B. Pete's	
Beers		
name	color	
SummerBrew	dark	
Ales		

Using Nulls

name	manf	color
Bud	A.B.	NULL
SummerBrew	Pete's	dark

Beers

Functional Dependencies

 $X \to A = \text{assertion about a relation } R \text{ that}$ whenever two tuples agree on all the attributes of X, then they must also agree on attribute A.

Example

Drinkers(name, addr, beersLiked, manf,
favoriteBeer)

name	addr	beersLiked	manf	favoriteBeer
Janeway Janeway Spock	v O	WickedAle		

- Reasonable FD's to assert:
- 1. name \rightarrow addr
- 2. name \rightarrow favoriteBeer
- 3. beersLiked \rightarrow manf

- Shorthand: combine FD's with common left side by concatenating their right sides.
- Sometimes, several attributes jointly determine another attribute, although neither does by itself. Example:

beer bar \rightarrow price

Keys of Relations

K is a key for relation R if:

- 1. $K \to \text{all attributes of } R$.
- 2. For **no proper subset** of K is (1) true.
- If K at least satisfies (1), then K is a superkey.

Conventions

- Pick one key; underline key attributes in the relation schema.
- X, etc., represent sets of attributes; A etc., represent single attributes.
- No set formers in FD's, e.g., ABC instead of $\{A, B, C\}$.

Drinkers(name, addr, beersLiked, manf,
favoriteBeer)

- {name, beersLiked} FD's all attributes, as seen.
 - ♦ Shows {name, beersLiked} is a superkey.
- name \rightarrow beersLiked is false, so name not a superkey.
- beersLiked \rightarrow name also false, so beersLiked not a superkey.
- Thus, {name, beersLiked} is a key.
- No other keys in this example.
 - Neither name nor beersLiked is on the right of any observed FD, so they must be part of any superkey.
- Important point: "key" in a relation refers to tuples, not the entities they represent. If an entity is represented by several tuples, then entity-key will not be the same as relation-key.

Who Determines Keys/FD's?

- We could assert a key K.
 - lacktriangle Then the only FD's asserted are that $K \to A$ for every attribute A.
 - lacktriangle No surprise: K is then the only key for those FD's, according to the formal definition of "key."
- Or, we could assert some FD's and *deduce* one or more keys by the formal definition.
 - ♦ E/R diagram implies FD's by key declarations and many-one relationship declarations.
- Rule of thumb: FD's either come from keyness, many-1 relationship, or from physics.
 - ★ E.g., "no two courses can meet in the same room at the same time" yields room time → course.

Inferring FD's

And this is important because . . .

• When we talk about improving relational designs, we often need to ask "does this FD hold in this relation?"

Given FD's $X1 \to A1$, $X2 \to A2 \cdots Xn \to An$, does FD $Y \to B$ necessarily hold in the same relation?

• Start by assuming two tuples agree in Y. Use given FD's to infer other attributes on which they must agree. If B is among them, then yes, else no.

Algorithm

Define $Y^+ = closure$ of Y = set of attributes functionally determined by Y:

- Basis: $Y^+ := Y$.
- Induction: If $X \subseteq Y^+$, and $X \to A$ is a given FD, then add A to Y^+ .

• End when Y^+ cannot be changed.

 $A \to B, BC \to D.$

- $\bullet \quad A^+ = AB.$
- $\bullet \quad C^+ = C.$
- $\bullet \quad (AC)^+ = ABCD.$

Finding All Implied FD's

Motivation: Suppose we have a relation ABCD with some FD's F. If we decide to decompose ABCD into ABC and AD, what are the FD's for ABC, AD?

- Example: $F = AB \rightarrow C, C \rightarrow D, D \rightarrow A$. It looks like just $AB \rightarrow C$ holds in ABC, but in fact $C \rightarrow A$ follows from F and applies to relation ABC.
- Problem is exponential in worst case.

Algorithm

- For each set of attributes X compute X^+ .
 - \bullet But skip $X = \emptyset$, X =all attributes.
 - \bullet Add $X \to A$ for each A in $X^+ X$.
- Drop $XY \to A$ if $X \to A$ holds.
- Finally, project the FD's by selecting only those FD's that involve only the attributes of the projection.
 - Notice that after we project the discovered FD's onto some relation, the eliminated FD's can be inferred in the projected relation.

In ABC with FD's $A \to B$, $B \to C$, project onto AC.

- 1. $A^+ = ABC$; yields $A \to B$, $A \to C$.
- 2. $B^+ = BC$; yields $B \to C$.
- 3. $AB^+ = ABC$; yields $AB \to C$; drop in favor of $A \to C$.
- 4. $AC^+ = ABC$ yields $AC \to B$; drop in favor of $A \to B$.
- 5. $C^+ = C$ and $BC^+ = BC$; adds nothing.
- Resulting FD's: $A \to B$, $A \to C$, $B \to C$.
- Projection onto $AC: A \to C$.