Relational Model

e Table = relation.
° Column headers = attributes.
e Row = tuple

name manf

WinterBrew | Pete’s
BudLite A.B.

Beers

e Relation schema = name(attributes) + other
structure info., e.g., keys, other constraints.
Example: Beers(name, manf).

[Order of attributes is arbitrary, but in
practice we need to assume the order
given in the relation schema.

° Relation instance is current set of rows for a
relation schema.

° Database schema = collection of relation
schemas.

Why Relations?

e Very simple model.

e Often a good match for the way we think
about our data.

e Abstract model that underlies SQL, the most
important language in DBMS’s today.

[But SQL uses “bags,” while the abstract
relational model is set-oriented.

Relational Design

Simplest approach (not always best): convert
each E.S. to a relation and each relationship to a
relation.

Entity Set — Relation

E.S. attributes become relational attributes.
) G

Beers

Becomes:

Beers (name, manf)

E/R Relationships — Relations

Relation has attribute for key attributes of each
E.S. that participates in the relationship.

e Add any attributes that belong to the
relationship itself.

e Renaming attributes OK.

[1 Essential if multiple roles for an E.S.

name name w
addr

Drinkers | Beers

husband wife

Married

Likes(drinker, beer)
Favorite(drinker, beer)

Buddies(namel, name2)
Married(husband, wife)

Combining Relations

Sometimes it makes sense to combine relations.

e Common case: Relation for an E.S. E plus the
relation for some many-one relationship from

E to another E.S.
Example

Combine Drinker (name, addr) with
Favorite(drinker, beer) to get
Drinkerl (name, addr, favBeer).

e Danger in pushing this idea too far:
redundancy.

e e.g., combining Drinker with Likes causes the
drinker’s address to be repeated viz.:

name addr beer

Sally | 123 Maple | Bud
Sally | 123 Maple | Miller

e Notice the difference: Favorite is many-one;
Likes is many-many.

Weak Entity Sets, Relationships — Relations

e Relation for a weak E.S. must include its full
key (i.e., attributes of related entity sets) as
well as its own attributes.

e A supporting (double-diamond) relationship
yields a relation that is actually redundant

and should be deleted from the database
schema.

Example

name name

)

Logins Hosts

Hosts(hostName)
Logins(loginName, hostName)
At(loginName, hostName, hostName2)

e In At, hostName and hostName2 must be the
same host, so delete one of them.

e Then, Logins and At become the same
relation; delete one of them.

e In this case, Hosts’ schema is a subset of
Logins’ schema. Delete Hosts?”

Subclasses — Relations

Three approaches:

1.

Object-oriented: each entity is in one class.
Create a relation for each class, with all the
attributes for that class.

[1 Don’t forget inherited attributes.

E/R style: an entity is in a network of classes
related by isa. Create one relation for each

E.S.

[An entity is represented in the relation for
each subclass to which it belongs.

[1 Relation has only the attributes attached
to that E.S. + key.

Use nulls. Create one relation for the root
class or root E.S., with all attributes found
anywhere in its network of subclasses.

[1 Put NULL in attributes not relevant to a
given entity.

Example

Beers

Ales

10

O0O-Style

name manf

Bud A.B.

Beers

name manf color

SummerBrew | Pete’s | dark

Ales
E/R Style
name manf
Bud A.B.
SummerBrew | Pete’s
Beers
name color

SummerBrew dark

Ales

11

Using Nulls

name manf color

Bud A.B. NULL
SummerBrew | Pete’s | dark

Beers

12

Functional Dependencies

X — A = assertion about a relation R that
whenever two tuples agree on all the attributes of
X, then they must also agree on attribute A.

Example

Drinkers(name, addr, beersLiked, manf,
favoriteBeer)

name |addr beersLiked {mant |favoriteBeer
Janeway|Voyager |Bud A.B. |WickedAle
Janeway|Voyager |WickedAle|Pete’s|WickedAle
Spock |Enterprise|Bud A.B. |Bud

e Reasonable FD’s to assert:
1. name — addr
2. name — favoriteBeer

3. beersLiked — manf

13

Shorthand: combine FD’s with common left
side by concatenating their right sides.

Sometimes, several attributes jointly
determine another attribute, although neither
does by itself. Example:

beer bar — price

14

Keys of Relations
K is a key for relation R if:

1. K — all attributes of R.
2. For no proper subset of K is (1) true.

e If K at least satisfies (1), then K is a
superkey.

Conventions

e Pick one key; underline key attributes in the
relation schema.

e X, etc., represent sets of attributes; A etc.,
represent single attributes.

e No set formers in FD’s, e.g., ABC instead of
{A, B, C}.

15

Example

Drinkers(name, addr, beerslLiked, manf,

favoriteBeer)

{name, beersLiked} FD’s all attributes, as
seen.

[0 Shows {name, beersLiked} is a superkey.

name — beersLiked is false, so name not a
superkey.

beersLiked — name also false, so beersLiked
not a superkey.

Thus, {name, beersLiked} is a key.
No other keys in this example.

[1 Neither name nor beersLiked is on the
right of any observed FD, so they must be
part of any superkey.

Important point: “key” in a relation refers to
tuples, not the entities they represent. If an
entity is represented by several tuples, then
entity-key will not be the same as relation-key.

16

Who Determines Keys/FD’s?

We could assert a key K.

[1 Then the only FD’s asserted are that
K — A for every attribute A.

[1 No surprise: K is then the only key
for those FD’s, according to the formal
definition of “key.”

Or, we could assert some FD’s and deduce one
or more keys by the formal definition.

[0 E/R diagram implies FD’s by key
declarations and many-one relationship
declarations.

Rule of thumb: FD’s either come from
keyness, many-1 relationship, or from physics.

[E.g., “no two courses can meet in the
same room at the same time” yields
room time — course.

17

Inferring FD’s

And this is important because . . .

e When we talk about improving relational
designs, we often need to ask “does this FD
hold in this relation?”

Given FD’s X1 — Al, X2 — A2---Xn — An,
does FD Y — B necessarily hold in the same
relation?

e Start by assuming two tuples agree in Y. Use
given FD’s to infer other attributes on which
they must agree. If B is among them, then
yes, else no.

18

Algorithm

Define YT = closure of Y = set of attributes
functionally determined by Y:

e Basis: YT =Y.

e Induction: If X C YT, and X — Ais a given
FD, then add A to Y.

e End when Y cannot be changed.

19

Example

A— B, BC — D.

A+ = AB.
c+=cC.
(AC)* = ABCD.

20

Finding All Implied FD’s

Motivation: Suppose we have a relation ABC'D

with some FD’s F'. If we decide to decompose
ABCD into ABC and AD, what are the FD’s for
ABC, AD?

e Example: FF =AB —- C,C — D, D — A.
It looks like just AB — C' holds in ABC, but

in fact C' — A follows from F' and applies to
relation ABC.

e Problem is exponential in worst case.

21

Algorithm

For each set of attributes X compute X .
0 But skip X =0, X = all attributes.
0 Add X — Aforeach Ain X — X.
Drop XY — A it X — A holds.

Finally, project the FD’s by selecting only
those FD’s that involve only the attributes
of the projection.

[Notice that after we project the
discovered FD’s onto some relation, the
eliminated FD’s can be inferred in the
projected relation.

22

Example

In ABC with FD's A — B, B — (', project onto
AC.

1. A" = ABC; yields A — B, A — C.
2. BT = BC; yields B — C.

3. ABT = ABC; yields AB — C; drop in favor of
A— C.

4. ACT = ABC yields AC — B; drop in favor of
A — B.

5. CT =C and BCT = B(C; adds nothing.
e Resulting FD’s: A— B, A—-(C, B— C.
e Projection onto AC: A — C.

23

