CS145 L ecture Notes #12
SQL 3 Object-Relational Features

What is an object-relational DBMS?
e Keeps relation as its fundamental abstraction, but throws in some
object-oriented ideas
~» Compare with an object-oriented DBMS, which uses class as the fun-
damental abstraction and tacks on relation as one of many types
Motivations for object-relational DBMS:
e Support structures more complex than just “flat tables’
e Allow DBMSto deal with specialized types—URL'’s, images, videos,
etc.—with their own specialized methods
e Support specialized methods even on conventional relational data
Current state of the standard:
e Most mgjor relational DBM S vendors now call their products object-
relational
e Thereis a great deal of variation in object-relationa functionalities
among current products and the SQL 3 standard
~» We will cover basic ideas from SQL 3, but use the syntax of Oracle 8

SQL 3 Object Support

e Row types: for tuplesin relations
— Can have references to objects of row types
e Column types (ADT'’s): for values of attributes
— Can have methods

Oracle 8 Object Support

Object Types

While SQL 3 has row and column types, Oracle 8 uses object types for both
Example: St udent Type, Cour seType, and TakeType

CREATE TYPE Student Type AS OBJECT (
SID INTEGER, name CHAR(30), age | NTEGER GPA FLOAT

)
/

Jun Yang 1 CS145 Spring 1999

CREATE TYPE CourseType AS OBJECT (
Cl D CHAR(10), TITLE VARCHAR(100)
)
/
CREATE TYPE TakeType AS OBJECT (
student Ref REF Student Type, courseRef REF CourseType

)
/

~+ In Oracle, type definitions must be followed by / in order to get them to
compile

Object Types AsRow Types

Example: St udent , Take, and Cour se tables

CREATE TABLE Student OF Student Type;
CREATE TABLE Course OF CourseType;
CREATE TABLE Take OF TakeType;

Values of Object Types

Each object type has a type constructor of the same name
Example: insert Bart into St udent

I NSERT | NTO St udent VALUES(123, ’'Bart’, 10, 3.5);
~» It works, but it is not very “ object-oriented”
~» Instead, use the type constructor:

I NSERT | NTO St udent

VALUES(St udent Type(123, 'Bart’, 10, 3.5));

Example: insert CS145 into Cour se

Example: insert the fact that Bart takes CS145
| NSERT | NTO Take VALUES(123, ’'CS145'); /* WRONG */

| NSERT | NTO Take VALUES /* WRONG */
(TakeType(REF(St udent Type(123, 'Bart’, 10, 3.5)),
REF(Cour seType(’ CS145’, 'Intro to DB))));

~ The referenced object must “live”’ in atable!

~+ In Oracle, whenever object types are involved, it is a good practice to
assign a tuple variable to every table in FROM—things might not always
work without tuple variables

Jun Yang 2 CS145 Spring 1999

Dereferencing

Use“.
Example: names of students taking CS145

What if we want the entire object being referenced?
e Okay to SELECT areference, but it isjust some gibberish value
Example: al information about CS145 students (not quite)

~» Use DEREF operator
Example: al information about CS145 students

Object Types As Column Types

Example: NaneTy pe for student names
CREATE TYPE NameType AS OBJECT (
firstName CHAR(20), | astNane CHAR(20)
)
/
CREATE TYPE Student Type AS OBJECT (
SID | NTEGER, nanme NameType, age | NTEGER, GPA FLOAT

);
/

Example: again, insert Bart into St udent

Example: find Simpsons’ average GPA

M ethods

e Methods are the real reason why object-relational is more than just
nested structures in relations

e Declare in CREATE TYPE statement

e Definein CREATE TYPE BODY statement

e Methodsin Oracle are written in PL/SQL

Jun Yang 3 CS145 Spring 1999

Example: a method to compute initials for names

CREATE TYPE NanmeType AS OBJECT (
firstName CHAR(20), | astNane CHAR(20),
MEMBER FUNCTI ON initials RETURN VARCHAR,
PRAGVA RESTRI CT_REFERENCES(initials, WADS, WNPS)

);
/
CREATE TYPE BODY NaneType AS
MEMBER FUNCTI ON initials RETURN VARCHAR IS
BEG N
RETURN SUBSTR(SELF.firstNane, 1, 1) ||
SUBSTR(SELF. | ast Nare, 1, 1);
END;
END;
/
e PRAGVA declaresi ni ti al s to beWNDS, “write no database state”,
and VWNPS, “write no package state’
— Necessary if wewantto usei ni ti al s inqueries
e A method can access a special tuple variable SELF, which refers to
the object in which the method is applied
e A method may take arguments
— Follow the method name by a list of argument declarations en-
closed in parentheses, likein a PL/SQL procedure
Example: initials of students taking CS145

e Again,use“. ” toinvoke methods
e Parentheses are required even if the method takes no arguments

Order Methods

One method can be declared as the ORDER method for atype
e This method must return less than 0, O, or greater than O, if SELF is
less than, equal to, or greater than the argument object
e This method would allow the type to participate in WHERE clauses
involving =, <=, etc., and in ORDER BY sorting
Example: order NanmeTy pe objects
CREATE TYPE NaneType AS OBJECT (
d?bER MEMBER FUNCTI ON conpar e
(other IN NanmeType) RETURN | NTEGER,

PRAGVA RESTRI CT_REFERENCES
(conmpare, WNDS, WNPS, RNPS, RNDS)

Jun Yang 4 CS145 Spring 1999

CREATE TYPE BODY NaneType AS

CRDER MEMBER FUNCTI ON compar e
(other I'N NanmeType) RETURN | NTEGER I S
BEA N
| F (SELF. | ast Name < ot her.|ast Nane) THEN
RETURN - 1;
ELSI F (SELF. | ast Nane > ot her.| ast Nane) THEN
RETURN 1;
ELSIF (SELF.firstNane < other.firstNanme) THEN
RETURN - 1;
ELSI F (SELF.firstName > other.firstNanme) THEN
RETURN 1;
ELSE RETURN O;
END | F;
END;
END;
/

Example: al CS145 students, sorted by name

Jun Yang 5 CS145 Spring 1999

