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CS154 Final Examination 

June 7, 2010, 7-10PM 

Directions: CS154 students: answer all 13 questions on this paper. 
Those taking CS154N should answer only questions 8-13.  The total 
number of points on this exam is 200, and the total of the points on 
the part for CS154N is 100.  The exam is open book and open notes. 
Any materials may be used.  
 

Name: _________________________________________  

I acknowledge and accept the Honor Code.  
 

                (signed)  _________________________________  
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If you are taking CS154N, skip to Problem 8. 
 

Problem 1 (20 pts.) The symmetric difference  of languages L and M, 
which we shall denote SD(L,M), is the set of strings that are in exactly 
one of L and M.  For example, if L = {00, 101} and M = {11, 00}, 
then SD(L,M) = {11, 101}.  

(a) Suppose L = L(0*1*) and M = L(1*0*).  What are all the strings 
of length 3 or less in SD(L,M)? 

________________________________________________________  

 (b) Write a regular expression for SD(L,M). 

________________________________________________________  

 
(c) Write a formula for SD(L,M) in terms of familar operations (i.e., 
those covered in class or in the text): 

________________________________________________________  

(d) Is SD(L,M) always a CFL?  Either explain why or give a 
counterexample 

________________________________________________________  

________________________________________________________  

________________________________________________________  
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Problem 2 (10 pts.) The language L1 = {0n1n2i | i ≠ n} is not a CFL, 
although the proof is rather tricky.  However, suppose we are given 
that L1 is not context-free.  Now consider the language                  
L2 = {0i1n2n | i ≠ n}.  We can prove L2 is not context-free either, by 
applying two operations, both known to turn CFL's into CFL's, and 
thereby convert L2 into L1. 
 

(a) What is the first operation you use?  Give specifics of the 
operation, if necessary (e.g., if you use "intersection with a regular 
language," tell what regular language you choose).  

________________________________________________________  

________________________________________________________  

(a) What is the second operation you use?  Give specifics of the 
operation, if necessary. 

________________________________________________________  

________________________________________________________  

Problem 3 (10 pts.) Let L = {0i1j | i < j}.  Use the pumping lemma 
for regular languages to prove L is not regular.  Suppose n is the 
pumping lemma constant.  Begin by picking a string w to focus on.  

(a) What string w do you choose? ________________________  

The "adversary" picks a decomposition w = xyz, such that |xy|< n and 
|y| > 0.  

(b) Demonstrate that L is not regular by showing that xyiz is not in L 
for some i.  Below, tell your choice of i and explain why the resulting 
string is not in L.  

________________________________________________________  

________________________________________________________  
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Problem 4 (15 pts.) Give a CFG for the language {0i1j2k | i+j > 2k}. 

________________________________________________________  

________________________________________________________  

________________________________________________________  

________________________________________________________  

You do not have to prove your grammar works, but in the table below, 
explain what each of your variables generates.  

Variable     Purpose                                                                      

 
  

 
  

 
  

 
  

 
  

 
  

 
 
 
Problem 5 (10 pts.) Suppose we use the construction of a CFG G 
whose language is N(P) from a given PDA P, as given in the text or in 
the class slides. Let P have s states.  Suppose also that one of the 
rules of P, which we shall call Rule R, is δ(q, a, X) = {(r, β)}.  Let β 
have length k.  As a function of s and k, how many productions of 
grammar G with variable [qXp] on the left come from Rule R?  Note: 
this problem differs from the one on the midterm not only in that the 
ambiguity has been cleared up, but the rule in question has a state r 
other than p. 

________________________________________________________  
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Problem 6 (20 pts.) Suppose L0 is some language over {0,1}*, and h 
is a homomorphism whose domain is {0,1} (that is, h(0) and h(1) are 
defined, and h(a) is not defined for any other symbol a).  Let L1 = 
h(L0) and L2 = h-1(L1).  In this problem, you must figure out whether 
L2 is guaranteed to be contained in L0, and/or vice-versa.  A proof 
must start by considering an arbitrary string w in one language, and 
without reference to the exact values of h(0) and h(1) prove that w is 
in the other language.  A counterexample must be a specific L, h, and 
w, such that w is in one language and not the other.  

(a) Is L0  L2?  Give a proof or a counterexample.  

________________________________________________________  

________________________________________________________  

________________________________________________________  

________________________________________________________  

(b) Is L2  L0?  Give a proof or a counterexample.  

________________________________________________________  

________________________________________________________  

________________________________________________________  

________________________________________________________  

 

 

 

 

 

 

 



 6 

 
Problem 7 (15 pts.) Here is a context-free grammar: 

S -> AS | SB | 0 
A -> BA | AS | 1 
B -> SB | BA | 0  
 
Note that each of the right sides AS, SB, and BA occurs twice.  In the 
space below, show the table you get by applying the CYK algorithm to 
this grammar and the string 01100.  

     

     

     

     

     

      0             1             1            0            0      
 

All students, including those taking CS154N, should do all the 
following problems. 

Problem 8 (20 pts.) The Turing Machine M has start state q, final 
state f, and no other states.  Its input symbols are 0 and 1, and the 
blank B is the only other tape symbol.  It has only two transitions: 
δ(q,0) = (q,0,R) and δ(q,B) = (f,1,R).  We shall give an inductive 
proof that L(M) contains every string of 0's.  It is also true that L(M) 
contains only those strings, but we shall not prove that here.  To 
begin, we shall prove by induction that for every string of the form 
0nα, where α is any string of 0's and 1's, q0nα ⊦* 0nqα.  
 
(a) (2 pts.) On what is your induction?  

______________________________  

(b) (2 pts.) What is the basis case?  

______________________________  

(c) (4 pts.) Prove the basis case:  

________________________________________________________  
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(d) (8 pts.) Prove the induction (Note: this proof is very simple and 
you should not use more than four lines): 

________________________________________________________  

________________________________________________________  

________________________________________________________  

________________________________________________________  

(e) (4 pts.) Complete the proof by showing that the inductively proved 
statement q0nα ⊦* 0nqα for any α can be used, together with a few 
simple observations, to conclude that M accepts 0n for any n.  
 
________________________________________________________  

________________________________________________________  

________________________________________________________  

Problem 9 (10 pts.) What are the satisfying truth assignments for the 
boolean formula (x+ -y)(y+ -z)?  Note: we're using - for NOT, + for 
OR, and juxtaposition for AND, as in the slides.  Represent a truth 
assignment by a string abc, where a, b, and c are each 0 (false) or 1 
(true), and represent the truth values of x, y, and z, respectively.  For 
example, the truth assignment where x and y are true and z is false is 
represented by 110. 
 
________________________________________________________ 
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Problem 10 (20 pts.) The Knapsack-With-Bonus Problem is: given a 
list of integers i1, i2,..., ik and a bonus b, can we partition the integers 
into two disjoint sets S and T such that the sum over all integers ij in S 
of ij+b equals the sum over all ij in T of ij+b.  For example, if the 
integers are 300, 400, 500, 600, and 700, and the bonus is b = 100, 
we could pick S = {300, 400, 500} and T = {600, 700}.  Then, the 
sum for S would be (300+100) + (400+100) + (500+100) = 1500, 
and the sum for T would be (600+100) + (700+100) = 1500.  

We know the Partition-Knapsack Problem discussed in class (partition 
a set of integers into two sets with equal sums) is NP-complete. 

(a) Prove that Knapsck-With-Bonus is NP-complete by describing a 
polynomial-time reduction from Partition-Knapsack to Knapsack-With-
Bonus.   You are not required to prove your reduction works, but give 
a brief explanation to be considered for partial credit. 

________________________________________________________  

________________________________________________________  

________________________________________________________  

________________________________________________________  

(b) Describe a polynomial-time reduction from Knapsack-With-Bonus 
to Partition-Knapsack.  You are not required to prove your reduction 
works, but give a brief explanation to be considered for partial credit. 

________________________________________________________  

________________________________________________________  

________________________________________________________  

________________________________________________________  
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Problem 11 (15 pts.) In the table below is an instance of Post's 
Correspondence Problem: 
 

Index  First 
String  

Second 
String  

1  00  001  

2  0101  11  

3  101  01  

4  01  010  
 
There is no Turing-machine algorithm to decide whether or not there is 
a solution to PCP.  But you're smarter than a Turing machine.  Figure it 
out for this instance. 

(a) (10 pts.) Either give a sequence of indexes that is a solution, or 
prove that no solution exists. 

________________________________________________________  

________________________________________________________  

________________________________________________________  

________________________________________________________  

(b) (5 pts.) Does your ability to answer (a) imply that human beings 
are able to solve problems that Turing machines (or equivalently, 
computers) cannot solve?  You may assume you correctly answered 
(a), even if you did not.  Explain briefly.  

________________________________________________________  

________________________________________________________  

________________________________________________________  

________________________________________________________  
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Problem 12 (15 pts.) There are five languages (or equivalently, 
problems) A, B, C, D, and E.  All we know about them is the following:  

1. A is in P.  
2. B is in NP.  
3. C is NP-complete.  
4. D is Recursive.  
5. E is Recursively Enumerable but not Recursive.  

For each of the five statements below, tell whether it is:  

 CERTAIN to be true, regardless of what problems A through E 
are and regardless of the resolution of unknown relationships 
among complexity classes, of which "is P = NP?" is one 
example.  

 MAYBE true, depending on what languages A through E are, 
and/or depending on the resolution of unknown relationships 
such as P = NP?  

 NEVER true, regardless of what A through E are and regardless 
of the resolution of unknown relationships such as P = NP?  

(a) There is a reduction from E to D. _______________  

(b) There is a polytime reduction from C to B. _______________  

(c) There is a polytime reduction from A to B. _______________  

(d) There is a polytime reduction from B to the complement of C.  

__________________  

(e) There is a reduction from D to C. _______________  
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Problem 13 (20 pts.) Design a Turing machine that, given a sequence 
of 0's and 1's on its tape followed by blanks, deletes the first 0 or 1 
and shifts all the following 0's and 1's one position left, and halts.  The 
TM starts in state q0, with the head at the leftmost of the 0's and 1's. 
It is not important where the head winds up at the end, or in what 
state it halts.  For example, given initial ID q0001, it should halt with 
01BB... on its tape, and given initial ID q01011, it should halt with 
011BB... on its tape.   Your TM should not use any tape symbols other 
than 0, 1, and B (the blank).  In the table below, describe the 
transition function δ for your TM.  That is, in the row for a state q and 
the column for a symbol X, show what δ(q,X) is.  Hint: Copy one 
symbol at a time from its original position to the position to its left. 

      State              0         1         B  

    

    

    

    

    

    
 

In the table below, explain informally what each of your states does. 
     

State Purpose                                                                      

 
  

 
  

 
  

 
  

 
  

 
  

 


