
 1

CS154 Final Examination

June 7, 2010, 7-10PM

Directions: CS154 students: answer all 13 questions on this paper.
Those taking CS154N should answer only questions 8-13. The total
number of points on this exam is 200, and the total of the points on
the part for CS154N is 100. The exam is open book and open notes.
Any materials may be used.

Name: ___

I acknowledge and accept the Honor Code.

 (signed) _________________________________

Problem Score

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 Total

 2

If you are taking CS154N, skip to Problem 8.

Problem 1 (20 pts.) The symmetric difference of languages L and M,
which we shall denote SD(L,M), is the set of strings that are in exactly
one of L and M. For example, if L = {00, 101} and M = {11, 00},
then SD(L,M) = {11, 101}.

(a) Suppose L = L(0*1*) and M = L(1*0*). What are all the strings
of length 3 or less in SD(L,M)?

__

 (b) Write a regular expression for SD(L,M).

__

(c) Write a formula for SD(L,M) in terms of familar operations (i.e.,
those covered in class or in the text):

__

(d) Is SD(L,M) always a CFL? Either explain why or give a
counterexample

__

__

__

 3

Problem 2 (10 pts.) The language L1 = {0n1n2i | i ≠ n} is not a CFL,
although the proof is rather tricky. However, suppose we are given
that L1 is not context-free. Now consider the language
L2 = {0i1n2n | i ≠ n}. We can prove L2 is not context-free either, by
applying two operations, both known to turn CFL's into CFL's, and
thereby convert L2 into L1.

(a) What is the first operation you use? Give specifics of the
operation, if necessary (e.g., if you use "intersection with a regular
language," tell what regular language you choose).

__

__

(a) What is the second operation you use? Give specifics of the
operation, if necessary.

__

__

Problem 3 (10 pts.) Let L = {0i1j | i < j}. Use the pumping lemma
for regular languages to prove L is not regular. Suppose n is the
pumping lemma constant. Begin by picking a string w to focus on.

(a) What string w do you choose? ________________________

The "adversary" picks a decomposition w = xyz, such that |xy|< n and
|y| > 0.

(b) Demonstrate that L is not regular by showing that xyiz is not in L
for some i. Below, tell your choice of i and explain why the resulting
string is not in L.

__

__

 4

Problem 4 (15 pts.) Give a CFG for the language {0i1j2k | i+j > 2k}.

__

__

__

__

You do not have to prove your grammar works, but in the table below,
explain what each of your variables generates.

Variable Purpose

Problem 5 (10 pts.) Suppose we use the construction of a CFG G
whose language is N(P) from a given PDA P, as given in the text or in
the class slides. Let P have s states. Suppose also that one of the
rules of P, which we shall call Rule R, is δ(q, a, X) = {(r, β)}. Let β
have length k. As a function of s and k, how many productions of
grammar G with variable [qXp] on the left come from Rule R? Note:
this problem differs from the one on the midterm not only in that the
ambiguity has been cleared up, but the rule in question has a state r
other than p.

__

 5

Problem 6 (20 pts.) Suppose L0 is some language over {0,1}*, and h
is a homomorphism whose domain is {0,1} (that is, h(0) and h(1) are
defined, and h(a) is not defined for any other symbol a). Let L1 =
h(L0) and L2 = h-1(L1). In this problem, you must figure out whether
L2 is guaranteed to be contained in L0, and/or vice-versa. A proof
must start by considering an arbitrary string w in one language, and
without reference to the exact values of h(0) and h(1) prove that w is
in the other language. A counterexample must be a specific L, h, and
w, such that w is in one language and not the other.

(a) Is L0  L2? Give a proof or a counterexample.

__

__

__

__

(b) Is L2  L0? Give a proof or a counterexample.

__

__

__

__

 6

Problem 7 (15 pts.) Here is a context-free grammar:

S -> AS | SB | 0
A -> BA | AS | 1
B -> SB | BA | 0

Note that each of the right sides AS, SB, and BA occurs twice. In the
space below, show the table you get by applying the CYK algorithm to
this grammar and the string 01100.

 0 1 1 0 0

All students, including those taking CS154N, should do all the
following problems.

Problem 8 (20 pts.) The Turing Machine M has start state q, final
state f, and no other states. Its input symbols are 0 and 1, and the
blank B is the only other tape symbol. It has only two transitions:
δ(q,0) = (q,0,R) and δ(q,B) = (f,1,R). We shall give an inductive
proof that L(M) contains every string of 0's. It is also true that L(M)
contains only those strings, but we shall not prove that here. To
begin, we shall prove by induction that for every string of the form
0nα, where α is any string of 0's and 1's, q0nα ⊦* 0nqα.

(a) (2 pts.) On what is your induction?

(b) (2 pts.) What is the basis case?

(c) (4 pts.) Prove the basis case:

__

 7

(d) (8 pts.) Prove the induction (Note: this proof is very simple and
you should not use more than four lines):

__

__

__

__

(e) (4 pts.) Complete the proof by showing that the inductively proved
statement q0nα ⊦* 0nqα for any α can be used, together with a few
simple observations, to conclude that M accepts 0n for any n.

__

__

__

Problem 9 (10 pts.) What are the satisfying truth assignments for the
boolean formula (x+ -y)(y+ -z)? Note: we're using - for NOT, + for
OR, and juxtaposition for AND, as in the slides. Represent a truth
assignment by a string abc, where a, b, and c are each 0 (false) or 1
(true), and represent the truth values of x, y, and z, respectively. For
example, the truth assignment where x and y are true and z is false is
represented by 110.

__

 8

Problem 10 (20 pts.) The Knapsack-With-Bonus Problem is: given a
list of integers i1, i2,..., ik and a bonus b, can we partition the integers
into two disjoint sets S and T such that the sum over all integers ij in S
of ij+b equals the sum over all ij in T of ij+b. For example, if the
integers are 300, 400, 500, 600, and 700, and the bonus is b = 100,
we could pick S = {300, 400, 500} and T = {600, 700}. Then, the
sum for S would be (300+100) + (400+100) + (500+100) = 1500,
and the sum for T would be (600+100) + (700+100) = 1500.

We know the Partition-Knapsack Problem discussed in class (partition
a set of integers into two sets with equal sums) is NP-complete.

(a) Prove that Knapsck-With-Bonus is NP-complete by describing a
polynomial-time reduction from Partition-Knapsack to Knapsack-With-
Bonus. You are not required to prove your reduction works, but give
a brief explanation to be considered for partial credit.

__

__

__

__

(b) Describe a polynomial-time reduction from Knapsack-With-Bonus
to Partition-Knapsack. You are not required to prove your reduction
works, but give a brief explanation to be considered for partial credit.

__

__

__

__

 9

Problem 11 (15 pts.) In the table below is an instance of Post's
Correspondence Problem:

Index First
String

Second
String

1 00 001

2 0101 11

3 101 01

4 01 010

There is no Turing-machine algorithm to decide whether or not there is
a solution to PCP. But you're smarter than a Turing machine. Figure it
out for this instance.

(a) (10 pts.) Either give a sequence of indexes that is a solution, or
prove that no solution exists.

__

__

__

__

(b) (5 pts.) Does your ability to answer (a) imply that human beings
are able to solve problems that Turing machines (or equivalently,
computers) cannot solve? You may assume you correctly answered
(a), even if you did not. Explain briefly.

__

__

__

__

 10

Problem 12 (15 pts.) There are five languages (or equivalently,
problems) A, B, C, D, and E. All we know about them is the following:

1. A is in P.
2. B is in NP.
3. C is NP-complete.
4. D is Recursive.
5. E is Recursively Enumerable but not Recursive.

For each of the five statements below, tell whether it is:

 CERTAIN to be true, regardless of what problems A through E
are and regardless of the resolution of unknown relationships
among complexity classes, of which "is P = NP?" is one
example.

 MAYBE true, depending on what languages A through E are,
and/or depending on the resolution of unknown relationships
such as P = NP?

 NEVER true, regardless of what A through E are and regardless
of the resolution of unknown relationships such as P = NP?

(a) There is a reduction from E to D. _______________

(b) There is a polytime reduction from C to B. _______________

(c) There is a polytime reduction from A to B. _______________

(d) There is a polytime reduction from B to the complement of C.

(e) There is a reduction from D to C. _______________

 11

Problem 13 (20 pts.) Design a Turing machine that, given a sequence
of 0's and 1's on its tape followed by blanks, deletes the first 0 or 1
and shifts all the following 0's and 1's one position left, and halts. The
TM starts in state q0, with the head at the leftmost of the 0's and 1's.
It is not important where the head winds up at the end, or in what
state it halts. For example, given initial ID q0001, it should halt with
01BB... on its tape, and given initial ID q01011, it should halt with
011BB... on its tape. Your TM should not use any tape symbols other
than 0, 1, and B (the blank). In the table below, describe the
transition function δ for your TM. That is, in the row for a state q and
the column for a symbol X, show what δ(q,X) is. Hint: Copy one
symbol at a time from its original position to the position to its left.

 State 0 1 B

In the table below, explain informally what each of your states does.

State Purpose

