The Pumping Lemma for CFL's

Statement
Applications

Intuition

- Recall the pumping lemma for regular languages.
\rightarrow It told us that if there was a string long enough to cause a cycle in the DFA for the language, then we could "pump" the cycle and discover an infinite sequence of strings that had to be in the language.

Intuition - (2)

-For CFL's the situation is a little more complicated.

- We can always find two pieces of any sufficiently long string to "pump" in tandem.
- That is: if we repeat each of the two pieces the same number of times, we get another string in the language.

Statement of the CFL Pumping Lemma

For every context-free language L
There is an integer n, such that
For every string z in L of length $\geq n$
There exists $z=u v w x y$ such that:

1. $|v w x| \leq n$.
2. $|v x|>0$.
3. For all $i \geq 0$, $u v^{i} w x^{i} y$ is in L.

Proof of the Pumping Lemma

Start with a CNF grammar for $L-\{\epsilon\}$.
Let the grammar have m variables.

- Pick $n=2^{m}$.

Let $|\mathrm{z}| \geq \mathrm{n}$.
*We claim ("Lemma 1 ") that a parse tree with yield z must have a path of length $\mathrm{m}+2$ or more.

Proof of Lemma 1

\checkmark If all paths in the parse tree of a CNF grammar are of length $\leq m+1$, then the longest yield has length $2^{\mathrm{m}-1}$, as in:

Back to the Proof of the Pumping Lemma

- Now we know that the parse tree for z has a path with at least $\mathrm{m}+1$ variables.
Consider some longest path.
-There are only m different variables, so among the lowest $m+1$ we can find two nodes with the same label, say A.
-The parse tree thus looks like:

Parse Tree in the PumpingLemma Proof

Pump Zero Times

Pump Twice

Pump Thrice Etc., Etc.

Using the Pumping Lemma

- Non-CFL's typically involve trying to match two pairs of counts or match two strings.
- Example: The text uses the pumping lemma to show that $\{w w \mid w$ in $(\mathbf{0}+\mathbf{1}) *\}$ is not a CFL.

Using the Pumping Lemma - (2)

- $\left\{0^{i} 10^{i} \mid i \geq 1\right\}$ is a CFL.
- We can match one pair of counts.
- But $L=\left\{0^{i} 10^{i} 10^{i} \mid i \geq 1\right\}$ is not.
- We can't match two pairs, or three counts as a group.
Proof using the pumping lemma.
Suppose L were a CFL.
Let n be L's pumping-lemma constant.

Using the Pumping Lemma - (3)

-Consider $z=0^{n} 10^{n} 10^{n}$.
We can write $z=u v w x y$, where
$|v w x| \leq n$, and $|v x| \geq 1$.
-Case 1: vx has no 0's.

- Then at least one of them is a 1 , and uwy has at most one 1 , which no string in L does.

Using the Pumping Lemma - (4)

Still considering $z=0^{n} 10^{n} 10^{n}$.
\checkmark Case 2: vx has at least one 0.

- vwx is too short (length $\leq \mathrm{n}$) to extend to all three blocks of $0^{\prime} s$ in $0^{n} 10^{n} 10^{n}$.
- Thus, uwy has at least one block of n O's, and at least one block with fewer than n O's.
- Thus, uwy is not in L .

