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Nondeterministic Finite 
Automata

Nondeterminism
Subset Construction
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Nondeterminism

A nondeterministic finite automaton
has the ability to be in several states at 
once.
Transitions from a state on an input 

symbol can be to any set of states.
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Nondeterminism – (2)

Start in one start state.
Accept if any sequence of choices leads 

to a final state.
Intuitively: the NFA always “guesses 

right.”
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Example: Moves on a 
Chessboard

States = squares.
Inputs = r (move to an adjacent red 

square) and b (move to an adjacent 
black square).
Start state, final state are in opposite 

corners.
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Example: Chessboard – (2)
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r         b
1 2,4    5
2 4,6       1,3,5
3 2,6    5
4 2,8   1,5,7
5 2,4,6,8  1,3,7,9
6 2,8      3,5,9
7 4,8      5
8 4,6      5,7,9
9 6,8   5*

Accept, since final state reached
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Formal NFA

A finite set of states, typically Q.
An input alphabet, typically Σ.
A transition function, typically δ.

A start state in Q, typically q0.
A set of final states F ⊆ Q.
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Transition Function of an NFA

δ(q, a) is a set of states.

Extend to strings as follows:
Basis: δ(q, ε) = {q}
Induction: δ(q, wa) = the union over 

all states p in δ(q, w) of δ(p, a)
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Language of an NFA

A string w is accepted by an NFA if 
δ(q0, w) contains at least one final 
state.
The language of the NFA is the set of 

strings it accepts.
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Example: Language 
of an NFA

For our chessboard NFA we saw that 
rbb is accepted.
If the input consists of only b’s, the set 

of accessible states alternates between 
{5} and {1,3,7,9}, so only even-length, 
nonempty strings of b’s are accepted.
What about strings with at least one r?
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Equivalence of DFA’s, NFA’s

A DFA can be turned into an NFA that 
accepts the same language.
If δD(q, a) = p, let the NFA have 
δN(q, a) = {p}.

Then the NFA is always in a set 
containing exactly one state – the state 
the DFA is in after reading the same 
input. 
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Equivalence – (2)

Surprisingly, for any NFA there is a DFA 
that accepts the same language.
Proof is the subset construction.
The number of states of the DFA can 

be exponential in the number of states 
of the NFA.
Thus, NFA’s accept exactly the regular 

languages.
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Subset Construction

Given an NFA with states Q, inputs Σ, 
transition function δN, state state q0, and 
final states F, construct equivalent DFA 
with:
 States 2Q (Set of subsets of Q).
 Inputs Σ.

 Start state {q0}.
 Final states = all those with a member of F.
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Critical Point

The DFA states have names that are 
sets of NFA states.
But as a DFA state, an expression like 

{p,q} must be read as a single symbol, 
not as a set.
Analogy: a class of objects whose 

values are sets of objects of another 
class.
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Subset Construction – (2)

The transition function δD is defined by:
δD({q1,…,qk}, a) is the union over all i = 

1,…,k  of δN(qi, a).

Example: We’ll construct the DFA 
equivalent of our “chessboard” NFA.
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Example: Subset Construction
r         b

1 2,4    5
2 4,6       1,3,5
3 2,6    5
4 2,8   1,5,7
5 2,4,6,8  1,3,7,9
6 2,8      3,5,9
7 4,8      5
8 4,6      5,7,9
9 6,8   5*

r b
{1} {2,4}       {5}

{2,4}
{5}

Alert: What we’re doing here is
the lazy form of DFA construction,
where we only construct a state
if we are forced to.
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Example: Subset Construction
r         b

1 2,4    5
2 4,6       1,3,5
3 2,6    5
4 2,8   1,5,7
5 2,4,6,8  1,3,7,9
6 2,8      3,5,9
7 4,8      5
8 4,6      5,7,9
9 6,8   5*

r b
{1}

{2,4,6,8}
{5}

{2,4} {2,4,6,8}  {1,3,5,7}

{1,3,5,7}

{2,4}       {5}
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Example: Subset Construction
r         b

1 2,4    5
2 4,6       1,3,5
3 2,6    5
4 2,8   1,5,7
5 2,4,6,8  1,3,7,9
6 2,8      3,5,9
7 4,8      5
8 4,6      5,7,9
9 6,8   5*

r b
{1}

*   {1,3,7,9}

{2,4,6,8}
{2,4,6,8}  {1,3,7,9}{5}

{2,4} {2,4,6,8}  {1,3,5,7}

{1,3,5,7}

{2,4}       {5}
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Example: Subset Construction
r         b

1 2,4    5
2 4,6       1,3,5
3 2,6    5
4 2,8   1,5,7
5 2,4,6,8  1,3,7,9
6 2,8      3,5,9
7 4,8      5
8 4,6      5,7,9
9 6,8   5*

r b
{1}

* {1,3,5,7,9}
*   {1,3,7,9}

{2,4,6,8} {1,3,5,7,9}{2,4,6,8}
{2,4,6,8}  {1,3,7,9}{5}

{2,4} {2,4,6,8}  {1,3,5,7}

{1,3,5,7}

{2,4}       {5}
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Example: Subset Construction
r         b

1 2,4    5
2 4,6       1,3,5
3 2,6    5
4 2,8   1,5,7
5 2,4,6,8  1,3,7,9
6 2,8      3,5,9
7 4,8      5
8 4,6      5,7,9
9 6,8   5*

r b
{1}

* {1,3,5,7,9}
*   {1,3,7,9}

{2,4,6,8} {1,3,5,7,9}{2,4,6,8}
{2,4,6,8}  {1,3,7,9}{5}

{2,4} {2,4,6,8}  {1,3,5,7}

{1,3,5,7}

{2,4}       {5}

{2,4,6,8} {1,3,5,7,9}
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Example: Subset Construction
r         b

1 2,4    5
2 4,6       1,3,5
3 2,6    5
4 2,8   1,5,7
5 2,4,6,8  1,3,7,9
6 2,8      3,5,9
7 4,8      5
8 4,6      5,7,9
9 6,8   5*

r b
{1}

* {1,3,5,7,9}
*   {1,3,7,9} {2,4,6,8}     {5}

{2,4,6,8} {1,3,5,7,9}{2,4,6,8}
{2,4,6,8}  {1,3,7,9}{5}

{2,4} {2,4,6,8}  {1,3,5,7}

{1,3,5,7}

{2,4}       {5}

{2,4,6,8} {1,3,5,7,9}
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Example: Subset Construction
r         b

1 2,4    5
2 4,6       1,3,5
3 2,6    5
4 2,8   1,5,7
5 2,4,6,8  1,3,7,9
6 2,8      3,5,9
7 4,8      5
8 4,6      5,7,9
9 6,8   5*

r b
{1}

* {1,3,5,7,9} {2,4,6,8} {1,3,5,7,9}
*   {1,3,7,9} {2,4,6,8}     {5}

{2,4,6,8} {1,3,5,7,9}{2,4,6,8}
{2,4,6,8}  {1,3,7,9}{5}

{2,4} {2,4,6,8}  {1,3,5,7}

{1,3,5,7}

{2,4}       {5}

{2,4,6,8} {1,3,5,7,9}
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Proof of Equivalence: Subset 
Construction

The proof is almost a pun.
Show by induction on |w| that

δN(q0, w) = δD({q0}, w)
Basis: w = ε: δN(q0, ε) = δD({q0}, ε) = 

{q0}.
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Induction

Assume IH for strings shorter than w.
Let w = xa; IH holds for x.
Let δN(q0, x) = δD({q0}, x) = S.

Let T = the union over all states p in S of 
δN(p, a).
Then δN(q0, w) = δD({q0}, w) = T.
 For NFA: the extension of δN.
 For DFA: definition of δD plus extension of δD.

• That is, δD(S, a) = T; then extend δD to w = xa.
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NFA’s With ε-Transitions

We can allow state-to-state transitions 
on ε input.

These transitions are done 
spontaneously, without looking at the 
input string.
A convenience at times, but still only 

regular languages are accepted.
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Example: ε-NFA

C

E F

A

B D1
1 1

0
0

0

ε

ε ε

0     1 ε
A  {E}  {B}  ∅
B   ∅ {C} {D}
C   ∅   {D}  ∅
D ∅ ∅   ∅
E   {F}   ∅ {B, C}
F   {D} ∅  ∅

*
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Closure of States

CL(q) = set of states you can reach 
from state q following only arcs labeled 
ε.
Example: CL(A) = {A};

CL(E) = {B, C, D, E}.

Closure of a set of states = union of 
the closure of each state. 

C

E F

A

B D1 1 1

0
0

0

ε

ε ε
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Extended Delta

 Basis:   (q, ε) = CL(q).

 Induction:   (q, xa) is computed as 
follows:

1. Start with   (q, x) = S.
2. Take the union of CL(δ(p, a)) for all p in S.

 Intuition:   (q, w) is the set of states 
you can reach from q following a path 
labeled w.

˄
δ

˄
δ

˄
δ

˄
δ

And notice that δ(q, a) is not
that set of states, for symbol a.
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Example: 
Extended Delta
 (A, ε) = CL(A) = {A}.

 (A, 0) = CL({E}) = {B, C, D, E}.
 (A, 01) = CL({C, D}) = {C, D}.
Language of an ε-NFA is the set of 

strings w such that   (q0, w) contains a 
final state.

C

E F

A

B D1 1 1

0
0

0

ε

ε ε
˄
δ
˄
δ
˄
δ

˄
δ
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Equivalence of NFA, ε-NFA

Every NFA is an ε-NFA.
 It just has no transitions on ε.

Converse requires us to take an ε-NFA 
and construct an NFA that accepts the 
same language.
We do so by combining ε–transitions 

with the next transition on a real input.
Warning: This treatment is a
bit different from that in the text.
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Picture of ε-Transition Removal

Transitions
on ε

a

a

a

Transitions
on ε
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Picture of ε-Transition Removal

Transitions
on ε

a

a

a

Transitions
on ε

Text goes
from here

To here, and performs
the subset construction
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Picture of ε-Transition Removal

Transitions
on ε

a

a

a

Transitions
on ε

We’ll go
from here

To here, with no
subset construction
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Equivalence – (2)

Start with an ε-NFA with states Q, 
inputs Σ, start state q0, final states F, 
and transition function δE.

Construct an “ordinary” NFA with states 
Q, inputs Σ, start state q0, final states 
F’, and transition function δN.
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Equivalence – (3)

 Compute δN(q, a) as follows:
1. Let S = CL(q).
2. δN(q, a) is the union over all p in S of 
δE(p, a).

 F’ = the set of states q such that 
CL(q) contains a state of F.

 Intuition: δN incorporates ε–transitions 
before using a but not after.
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Equivalence – (4)

Prove by induction on |w| that

CL(δN(q0, w)) =   E(q0, w).
Thus, the ε-NFA accepts w if and only if 

the “ordinary” NFA does.

˄
δ
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Example: ε-NFA-
to-NFA

0     1 ε
A  {E}  {B}  ∅
B   ∅ {C} {D}
C   ∅   {D}  ∅
D ∅ ∅   ∅
E   {F}   ∅ {B, C}
F   {D} ∅  ∅

*

ε-NFA

0     1
A  {E}  {B}
B   ∅ {C}
C   ∅   {D}
D ∅ ∅
E   {F}  {C, D}
F   {D}   ∅

*
*

*

Since closure of
E includes B and
C; which have
transitions on 1
to C and D.

Since closures of
B and E include
final state D.

Interesting
closures: CL(B)
= {B,D}; CL(E)
= {B,C,D,E}
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Summary

DFA’s, NFA’s, and ε–NFA’s all accept 
exactly the same set of languages: the 
regular languages.
The NFA types are easier to design and 

may have exponentially fewer states 
than a DFA.
But only a DFA can be implemented!


