Nondeterministic Finite Automata

Nondeterminism

Subset Construction

Nondeterminism

- A nondeterministic finite automaton has the ability to be in several states at once.

Transitions from a state on an input symbol can be to any set of states.

Nondeterminism - (2)

Start in one start state.
\checkmark Accept if any sequence of choices leads to a final state.

Intuitively: the NFA always "guesses right."

Example: Moves on a Chessboard

States = squares.

- Inputs $=$ r (move to an adjacent red square) and b (move to an adjacent black square).

Start state, final state are in opposite corners.

Example: Chessboard - (2)

Formal NFA

A finite set of states, typically Q.
\checkmark An input alphabet, typically Σ.
A transition function, typically δ.
\rightarrow A start state in Q, typically q_{0}.
\checkmark A set of final states $F \subseteq$ Q.

Transition Function of an NFA

$\delta(q, a)$ is a set of states.
Extend to strings as follows:

- Basis: $\delta(q, \epsilon)=\{q\}$
- Induction: $\delta(q, w a)=$ the union over all states p in $\delta(q, w)$ of $\delta(p, a)$

Language of an NFA

\checkmark A string w is accepted by an NFA if $\delta\left(q_{0}, w\right)$ contains at least one final state.

The language of the NFA is the set of strings it accepts.

Example: Language of an NFA

\checkmark For our chessboard NFA we saw that rbb is accepted.

- If the input consists of only b's, the set of accessible states alternates between $\{5\}$ and $\{1,3,7,9\}$, so only even-length, nonempty strings of b's are accepted.
What about strings with at least one r?

Equivalence of DFA's, NFA's

- A DFA can be turned into an NFA that accepts the same language.
If $\delta_{D}(q, a)=p$, let the NFA have $\delta_{N}(q, a)=\{p\}$.
Then the NFA is always in a set containing exactly one state - the state the DFA is in after reading the same input.

Equivalence - (2)

Surprisingly, for any NFA there is a DFA that accepts the same language.
Proof is the subset construction.

- The number of states of the DFA can be exponential in the number of states of the NFA.
Thus, NFA's accept exactly the regular languages.

Subset Construction

\checkmark Given an NFA with states Q , inputs Σ, transition function δ_{N}, state state q_{0}, and final states F, construct equivalent DFA with:

- States 2^{Q} (Set of subsets of Q).
- Inputs Σ.
- Start state $\left\{\mathrm{q}_{0}\right\}$.
- Final states $=$ all those with a member of F.

Critical Point

- The DFA states have names that are sets of NFA states.
- But as a DFA state, an expression like $\{p, q\}$ must be read as a single symbol, not as a set.
- Analogy: a class of objects whose values are sets of objects of another class.

Subset Construction - (2)

\rightarrow The transition function δ_{D} is defined by:
$\delta_{D}\left(\left\{q_{1}, \ldots, q_{k}\right\}, a\right)$ is the union over all $i=$ $1, \ldots, k$ of $\delta_{N}\left(q_{i}, a\right)$.

- Example: We'll construct the DFA equivalent of our "chessboard" NFA.

Example: Subset Construction

	r	b
1	2,4	5
2	4,6	$1,3,5$
3	2,6	5
4	2,8	$1,5,7$
5	$2,4,6,8$	$1,3,7,9$
6	2,8	$3,5,9$
7	4,8	5
8	4,6	$5,7,9$
9	6,8	5

Alert: What we're doing here is the lazy form of DFA construction, where we only construct a state if we are forced to.

Example: Subset Construction

\rightarrow| | r | b |
| :--- | :--- | :--- |
| 1 | 2,4 | 5 |
| 2 | 4,6 | $1,3,5$ |
| 3 | 2,6 | 5 |
| 4 | 2,8 | $1,5,7$ |
| 5 | $2,4,6,8$ | $1,3,7,9$ |
| 6 | 2,8 | $3,5,9$ |
| 7 | 4,8 | 5 |
| 8 | 4,6 | $5,7,9$ |
| 9 | 6,8 | 5 |

	r	b
$\{1\}$	$\{2,4\}$	$\{5\}$
$\{2,4\}$	$\{2,4,6,8\}$	$\{1,3,5,7\}$
$\{5\}$		
$\{2,4,6,8\}$		
$\{1,3,5,7\}$		

Example: Subset Construction

\rightarrow| | r | b |
| :--- | :--- | :--- |
| 1 | 2,4 | 5 |
| 2 | 4,6 | $1,3,5$ |
| 3 | 2,6 | 5 |
| 4 | 2,8 | $1,5,7$ |
| 5 | $2,4,6,8$ | $1,3,7,9$ |
| 6 | 2,8 | $3,5,9$ |
| 7 | 4,8 | 5 |
| 8 | 4,6 | $5,7,9$ |
| 9 | 6,8 | 5 |

	r	b
$\{1\}$	$\{2,4\}$	$\{5\}$
$\{2,4\}$	$\{2,4,6,8\}$	$\{1,3,5,7\}$
$\{5\}$	$\{2,4,6,8\}$	$\{1,3,7,9\}$
$\{2,4,6,8\}$		
}{}		

Example: Subset Construction

	r	b
1	2,4	5
2	4,6	$1,3,5$
3	2,6	5
4	2,8	$1,5,7$
5	$2,4,6,8$	$1,3,7,9$
6	2,8	$3,5,9$
7	4,8	5
8	4,6	$5,7,9$
9	6,8	5

	r	b
$\rightarrow\{1\}$	\{2,4\}	\{5\}
\{2,4\}	\{2,4,6,8\}	\{1, 3, 5, 7\}
\{5\}	\{2,4,6,8\}	\{1,3,7,9\}
\{2,4,6,8\}	\{2,4,6,8\}	\{1,3,5,7,9\}
\{1,3,5,7\}		
* $\{1,3,7,9\}$		
* $\{1,3,5,7,9\}$		

Example: Subset Construction

\rightarrow| | r | b |
| :--- | :--- | :--- |
| 1 | 2,4 | 5 |
| 2 | 4,6 | $1,3,5$ |
| 3 | 2,6 | 5 |
| 4 | 2,8 | $1,5,7$ |
| 5 | $2,4,6,8$ | $1,3,7,9$ |
| 6 | 2,8 | $3,5,9$ |
| 7 | 4,8 | 5 |
| 8 | 4,6 | $5,7,9$ |
| 9 | 6,8 | 5 |

	r	b
$\rightarrow\{1\}$	$\{2,4\}$	$\{5\}$
$\{2,4\}$	$\{2,4,6,8\}$	$\{1,3,5,7\}$
$\{5\}$	$\{2,4,6,8\}$	$\{1,3,7,9\}$
$\{2,4,6,8\}$	$\{2,4,6,8\}$	$\{1,3,5,7,9\}$
$\{1,3,5,7\}$	$\{2,4,6,8\}$	$\{1,3,5,7,9\}$
$*\{1,3,7,9\}$		
$*\{1,3,5,7,9\}$		

Example: Subset Construction

\rightarrow| | r | b |
| :--- | :--- | :--- |
| 1 | 2,4 | 5 |
| 2 | 4,6 | $1,3,5$ |
| 3 | 2,6 | 5 |
| 4 | 2,8 | $1,5,7$ |
| 5 | $2,4,6,8$ | $1,3,7,9$ |
| 6 | 2,8 | $3,5,9$ |
| 7 | 4,8 | 5 |
| 8 | 4,6 | $5,7,9$ |
| 9 | 6,8 | 5 |

	r	b
\{1\}	$\{2,4\}$	$\{5\}$
$\{2,4\}$	$\{2,4,6,8\}$	$\{1,3,5,7\}$
$\{5\}$	$\{2,4,6,8\}$	$\{1,3,7,9\}$
$\{2,4,6,8\}$	$\{2,4,6,8\}$	$\{1,3,5,7,9\}$
$\{1,3,5,7\}$	$\{2,4,6,8\}$	$\{1,3,5,7,9\}$
$*\{1,3,7,9\}$	$\{2,4,6,8\}$	$\{5\}$
$*\{1,3,5,7,9\}$		

Example: Subset Construction

\rightarrow| | r | b |
| :--- | :--- | :--- |
| 1 | 2,4 | 5 |
| 2 | 4,6 | $1,3,5$ |
| 3 | 2,6 | 5 |
| 4 | 2,8 | $1,5,7$ |
| 5 | $2,4,6,8$ | $1,3,7,9$ |
| 6 | 2,8 | $3,5,9$ |
| 7 | 4,8 | 5 |
| 8 | 4,6 | $5,7,9$ |
| 9 | 6,8 | 5 |

	r	b
\{1\}	$\{2,4\}$	$\{5\}$
$\{2,4\}$	$\{2,4,6,8\}$	$\{1,3,5,7\}$
$\{5\}$	$\{2,4,6,8\}$	$\{1,3,7,9\}$
$\{2,4,6,8\}$	$\{2,4,6,8\}$	$\{1,3,5,7,9\}$
$\{1,3,5,7\}$	$\{2,4,6,8\}$	$\{1,3,5,7,9\}$
$*\{1,3,7,9\}$	$\{2,4,6,8\}$	$\{5\}$
$*\{1,3,5,7,9\}$	$\{2,4,6,8\}$	$\{1,3,5,7,9\}$

Proof of Equivalence: Subset Construction

\rightarrow The proof is almost a pun.
\checkmark Show by induction on $|w|$ that

$$
\delta_{N}\left(q_{0}, w\right)=\delta_{D}\left(\left\{q_{0}\right\}, w\right)
$$

Basis: $w=\epsilon: \delta_{N}\left(q_{0}, \epsilon\right)=\delta_{D}\left(\left\{q_{0}\right\}, \epsilon\right)=$ $\left\{q_{0}\right\}$.

Induction

\checkmark Assume IH for strings shorter than w.
Let $w=x a ;$ IH holds for x.
Let $\delta_{N}\left(q_{0}, x\right)=\delta_{D}\left(\left\{q_{0}\right\}, x\right)=S$.
Let $T=$ the union over all states p in S of $\delta_{N}(p, a)$.
\Rightarrow Then $\delta_{N}\left(q_{0}, w\right)=\delta_{D}\left(\left\{q_{0}\right\}, w\right)=T$.

- For NFA: the extension of δ_{N}.
- For DFA: definition of δ_{D} plus extension of δ_{D}.
- That is, $\delta_{D}(S, a)=T$; then extend δ_{D} to $w=x a$.

NFA's With \in-Transitions

\checkmark We can allow state-to-state transitions on \in input.
-These transitions are done spontaneously, without looking at the input string.
A convenience at times, but still only regular languages are accepted.

Example: Є-NFA

Closure of States

$\checkmark C L(q)=$ set of states you can reach from state q following only arcs labeled ϵ.
\rightarrow Example: $\mathrm{CL}(\mathrm{A})=\{\mathrm{A}\}$; $C L(E)=\{B, C, D, E\}$.

Closure of a set of states $=$ union of the closure of each state.

Extended Delta

- Basis: $\hat{\delta}(q, \epsilon)=C L(q)$.
- Induction: $\delta(q, x a)$ is computed as follows:

1. Start with $\hat{\delta}(q, x)=S$.
2. Take the union of $C L(\delta(p, a))$ for all p in S.

Intuition: $\delta(q, w)$ is the set of states you can reach from q following a path labeled w.

And notice that $\delta(q, a)$ is not

that set of states, for symbol a.

Extended Delta今

- $\delta(A, O)=C L(\{E\})=\{B, C, D, E\}$.
- $\delta(A, 01)=C L(\{C, D\})=\{C, D\}$.
- Language of an ϵ-NFA is the set of strings w such that $\delta\left(q_{0}, w\right)$ contains a final state.

$-\delta(A, \epsilon)=C L(A)=\{A\}$.

Equivalence of NFA, є-NFA

\checkmark Every NFA is an ϵ-NFA.

- It just has no transitions on ϵ.
\checkmark Converse requires us to take an ϵ-NFA and construct an NFA that accepts the same language.
\checkmark We do so by combining ϵ-transitions with the next transition on a real input.

Warning: This treatment is a bit different from that in the text.

Picture of ϵ-Transition Removal

Picture of ϵ-Transition Removal

$\begin{array}{ll}\text { Text goes } & \text { To here, and performs } \\ \text { from here } & \text { the subset construction }\end{array}$ on ϵ
from here

Transitions
on ϵ

Picture of ϵ-Transition Removal

Equivalence - (2)

Start with an ϵ-NFA with states Q, inputs Σ, start state q_{0}, final states F, and transition function δ_{E}.
-Construct an "ordinary" NFA with states Q , inputs Σ, start state q_{0}, final states F^{\prime}, and transition function δ_{N}.

Equivalence - (3)

- Compute $\delta_{N}(q, a)$ as follows:

1. Let $S=C L(q)$.
2. $\delta_{N}(q, a)$ is the union over all p in S of $\delta_{E}(p, a)$.

- $F^{\prime}=$ the set of states q such that $C L(q)$ contains a state of F. Intuition: δ_{N} incorporates ϵ-transitions before using a but not after.

Equivalence - (4)

\langle Prove by induction on $| w \mid$ that

$$
C L\left(\delta_{N}\left(q_{0}, w\right)\right)=\hat{\delta}_{E}\left(q_{0}, w\right)
$$

-Thus, the ϵ-NFA accepts w if and only if the "ordinary" NFA does.

I nteresting

closures: CL(B)
$=\{B, D\} ; C L(E)$
$=\{B, C, D, E\}$

	0	1	ϵ
A	$\{\mathrm{E}\}$	$\{\mathrm{B}\}$	\varnothing
B	\varnothing	$\{\mathrm{C}\}$	$\{\mathrm{D}\}$
C	\varnothing	$\{\mathrm{D}\}$	\varnothing
$* \mathrm{D}$	\varnothing	\varnothing	\varnothing
E	$\{\mathrm{F}\}$	\varnothing	$\{\mathrm{B}, \mathrm{C}\}$
F	$\{\mathrm{D}\}$	\varnothing	\varnothing

E-NFA
Since closures of B and E include final state D.

Example: E-NFA-

 to-NFA| | 0 | 1 | |
| :---: | :---: | :---: | :---: |
| \rightarrow | A | $\{E\}$ | $\{B\}$ |
| $*$ | B | \varnothing | $\{C\}$ |
| | C | \varnothing | $\{D\}$ |
| $*$ | D | \varnothing | \varnothing |
| $*$ | E | $\{F\}$ | $\{C$, |
| | F | $\{D\}$ | \varnothing |

Since closure of E includes B and
C; which have transitions on 1 to C and D .

Summary

\checkmark DFA's, NFA's, and ϵ-NFA's all accept exactly the same set of languages: the regular languages.
\checkmark The NFA types are easier to design and may have exponentially fewer states than a DFA.
But only a DFA can be implemented!

