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Polynomial-Space-Bounded TM’s

A TM M is said to be polyspace-
bounded if there is a polynomial p(n) 
such that, given input of length n, M 
never uses more than p(n) cells of its 
tape.
L(M) is in the class polynomial space, or 

PS.
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Nondeterministic Polyspace

If we allow a TM M to be 
nondeterministic but to use only p(n) 
tape cells in any sequence of ID’s when 
given input of length n, we say M is a 
nondeterministic polyspace-bounded
TM.
And L(M) is in the class 

nondeterministic polyspace, or NPS.
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Relationship to Other Classes

Obviously, P  PS and NP  NPS.
 If you use polynomial time, you cannot 

reach more than a polynomial number of 
tape cells.

Alas, it is not even known whether P = 
PS or NP = PS.
On the other hand, we shall show PS = 

NPS.
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Exponential Polytime Classes

A DTM M runs in exponential polytime
if it makes at most cp(n) steps on input 
of length n, for some constant c and 
polynomial p.
Say L(M) is in the class EP.
If M is an NTM instead, say L(M) is in 

the class NEP (nondeterministic 
exponential polytime ).
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More Class Relationships

P  NP  PS  EP, and at least one of 
these is proper.
 A diagonalization proof shows that P  EP.

PS  EP requires proof.
Key Point: A polyspace-bounded TM 

has only cp(n) different ID’s.
We can count to cp(n) in polyspace and stop 

it after it surely repeated an ID.
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Proof PS  EP

Let M be a p(n)-space bounded DTM 
with s states and t tape symbols.
Assume M has only one semi-infinite 

tape.
The number of possible ID’s of M is 

sp(n)tp(n) .

States
Positions of
tape head

Tape
contents
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Proof PS  EP – (2)

Note that (t+1)p(n)+1 > p(n)tp(n).
 Use binomial expansion (t+1)p(n)+1 = tp(n)+1 

+ (p(n)+1)tp(n) + …

Also, s = (t+1)c, where c = logt+1s.
Thus, sp(n)tp(n) < (t+1)p(n)+1+c.
We can count to the maximum number 

of ID’s on a separate tape using base 
t+1 and p(n)+1+c cells – a polynomial.
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Proof PS  EP – (2)

Redesign M to have a second tape and to 
count on that tape to sp(n)tp(n).
The new TM M’ is polyspace bounded.
M’ halts if its counter exceeds sp(n)tp(n).
 If M accepts, it does so without repeating an 

ID.

Thus, M’ is exponential-polytime bounded, 
proving L(M) is in EP.
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Savitch’s Theorem: PS = NPS

Key Idea: a polyspace NTM has “only” 
cp(n) different ID’s it can enter.
Implement a deterministic, recursive 

function that decides, about the NTM, 
whether I⊦*J in at most m moves.

Assume m < cp(n), since if the NTM 
accepts, it does so without repeating an 
ID.
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Savitch’s Theorem – (2)

Recursive doubling trick: to tell if I⊦*J in  
< m moves, search for an ID K such that 
I⊦*K and K⊦*J, both in < m/2 moves.
Complete algorithm: ask if I0⊦*J in at 

most cp(n) moves, where I0 is the initial ID 
with given input w of length n, and J is 
any of the ID’s with an accepting state 
and length < p(n).
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Recursive Doubling

boolean function f(I, J, m) {
for (all ID’s K using p(n) tape)

if (f(I, K, m/2) && f(K, J, m/2))
return true;

return false;
}
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Stack Implementation of f

I, J, m

O(p(n))
space

I, K, m/2

O(p(n))
space

L, K, m/4

O(p(n))
space

M, N, 1

O(p(n))
space

. . .

O(p2(n)) space
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Space for Recursive Doubling

f(I, J, m) requires space O(p(n)) to 
store I, J, m, and the current K.
m need not be more than cp(n), so it can be 

stored in O(p(n)) space.

How many calls to f can be active at 
once?
Largest m is cp(n).
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Space for Recursive Doubling – (2)

Each call with third argument m results 
in only one call with argument m/2 at 
any one time.
Thus, at most log2cp(n) = O(p(n)) calls 

can be active at any one time.
Total space needed by the DTM is 

therefore O(p2(n)) – a polynomial.
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PS-Complete Problems

 A problem P in PS is said to be PS-
complete if there is a polytime reduction 
from every problem in PS to P.
 Note: it has to be polytime, not polyspace, 

because:
1. Polyspace can exponentiate the output size.
2. Without polytime, we could not deal with the 

question P = PS?
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What PS-Completeness Buys

 If some PS-complete problem is:
1. In P, then P = PS.
2. In NP, then NP = PS.
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Quantified Boolean Formulas

We shall meet a PS-complete problem, 
called QBF : is a given quantified boolean 
formula true?
But first we meet the QBF’s themselves.
We shall give a recursive (inductive) 

definition of QBF’s along with the 
definition of free/bound variable 
occurrences.
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QBF’s – (2)

 First-order predicate logic, with 
variables restricted to true/false.

 Basis:
1. Constants 0 (false) and 1 (true) are 

QBF’s.
2. A variable is a QBF, and that variable 

occurrence is free in this QBF.
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QBF’s – (3)

 Induction: If E and F are QBF’s, so are:
1. E AND F, E OR F, and NOT F.
 Variables are bound or free as in E or F.

2. (x)E and (x)E for any variable x.
 All free occurrences x are bound to this 

quantifier, and other occurrences of variables 
are free/bound as in E.

 Use parentheses to group as needed.
 Precedence: quantifiers, NOT, AND, OR.
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Example: QBF

(x)(y)(((x)(x OR y)) AND NOT (x AND y))
bound

bound

bound
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Evaluating QBF’s

In general, a QBF is a function from 
truth assignments for its free variables 
to {0, 1} (false/true).
Important special case: no free 

variables; a QBF is either true or false.
We shall give the evaluation only for 

these formulas.
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Evaluating QBF’s – (2)

Induction on the number of operators, 
including quantifiers.
Stage 1: eliminate quantifiers.
Stage 2: evaluate variable-free formulas.
Basis: 0 operators.
 Expression can only be 0 or 1, because there 

are no free variables.
 Truth value is 0 or 1, respectively.
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Induction

1. Expression is NOT E, E OR F, or E AND F.
 Evaluate E and F; apply boolean operator to 

the results.
2. Expression is (x)E.
 Construct E0 = E with each x bound to this 

quantifier replaced by 0, and analogously E1.
 E is true iff both E0 and E1 are true.

3. Expression is (x)E.
 Same, but E is true iff either E0 or E1 is true.
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Example: Evaluation

(x)(y)(((x)(x OR y)) AND NOT (x AND y))
Substitute x = 0 for outer quantifier:
(y)(((x)(x OR y)) AND NOT (0 AND y))
Substitute x = 1 for outer quantifier:
(y)(((x)(x OR y)) AND NOT (1 AND y))
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Example: Evaluation – (2)

Let’s follow the x = 0 subproblem:

(y)(((x)(x OR y)) AND NOT (0 AND y))
Two cases: y = 0 and y = 1.

((x)(x OR 0)) AND NOT (0 AND 0)

((x)(x OR 1)) AND NOT (0 AND 1)
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Example: Evaluation – (3)

Let’s follow the y = 0 subproblem:

((x)(x OR 0)) AND NOT (0 AND 0)
Need to evaluate (x)(x OR 0).
 x = 0: 0 OR 0 = 0.
 x = 1: 1 OR 0 = 1.
 Hence, value is 1.

Answer is 1 AND NOT (0 AND 0) = 1.
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Example: Evaluation – (4)

Let’s follow the y = 1 subproblem:

((x)(x OR 1)) AND NOT (0 AND 1)
Need to evaluate (x)(x OR 1).
 x = 0: 0 OR 1 = 1.
 x = 1: 1 OR 1 = 1.

Hence, value is 1.
Answer is 1 AND NOT (0 AND 1) = 1.
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Example: Evaluation – (5)

Now we can resolve the (outermost)    
x = 0 subproblem:

(y)(((x)(x OR y)) AND NOT (0 AND y))
We found both of its subproblems are 

true.
We only needed one, since the outer 

quantifier is y.
Hence, 1.
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Example: Evaluation – (6)

Next, we must deal with the x = 1 
case:

(y)(((x)(x OR y)) AND NOT (1 AND y))
It also has the value 1, because the 

subproblem y = 0 evaluates to 1.
Hence, the entire QBF has value 1.
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The QBF Problem

The problem QBF is:
 Given a QBF with no free variables, is its 

value 1 (true)?

Theorem: QBF is PS-complete.
Comment: What makes QBF extra 

hard?  Alternation of quantifiers.
 Example: if only  used, then the problem 

is really SAT.
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Part I: QBF is in PS

Suppose we are given QBF F of length n.
F has at most n operators.
We can evaluate F using a stack of 

subexpressions that never has more than 
n subexpressions, each of length < n.
Thus, space used is O(n2).
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QBF is in PS – (2)

 Suppose we have subexpression E on 
top of the stack, and E = G OR H.

1. Push G onto the stack.
2. Evaluate it recursively.
3. If true, return true.
4. If false, replace G by H, and return 

what H returns.
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QBF is in PS – (3)

Cases E = G AND H and E = NOT G are 
handled similarly.
If E = (x)G, then treat E as if it were   

E = E0 OR E1.
 Observe: difference between  and OR is 

succinctness; you don’t write both E0 and E1.
• But E0 and E1 must be almost the same.

If E = (x)G, then treat E as if it were   
E = E0 AND E1.
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Part II: All of PS Polytime 
Reduces to QBF

Recall that if a polyspace-bounded TM M 
accepts its input w of length n, then it 
does so in cp(n) moves, where c is a 
constant and p is a polynomial.
Use recursive doubling to construct a 

QBF saying “there is a sequence of cp(n)

moves of M leading to acceptance of w.”
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Polytime Reduction: The Variables

We need collections of boolean 
variables that together represent one 
ID of M.
A variable ID I is a collection of 

O(p(n)) variables yj,A.
 True iff the j-th position of the ID I is A (a 

state or tape symbol).
 0 < j < p(n)+1 = length of an ID.
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The Variables – (2)

We shall need O(p(n)) variable ID’s.
 So the total number of boolean variables is 

O(p2(n)).

Shorthand: (I), where I is a variable 
ID, is short for (y1)(y2)(…), where the 
y’s are the boolean variables belonging 
to I.
Similarly (I).
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Structure of the QBF

 The QBF is (I0)(If)(S AND N AND F 
AND U), where:

1. I0 and If are variable ID’s representing the 
start and accepting ID’s respectively.

2. U = “unique” = one symbol per position.
3. S = “starts right”: I0 = q0w.
4. F = “finishes right” = If accepts.
5. N = “moves right.”
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Structure of U, S, and F

U is as done for Cook’s theorem.
S asserts that the first n+1 symbols of 

I0 are q0w, and other symbols are 
blank.
F asserts one of the symbols of If is a 

final state.
All are easy to write in O(p(n)) time.
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Structure of QBF N

N(I0,If) needs to say that I0⊦*If by at 
most cp(n) moves.
We construct subexpressions N0, N1, 

N2,… where Ni(I,J) says “I⊦*J by at 
most 2i moves.”
N is Nk, where k = log2cp(n) = O(p(n)).

Note: differs from text,
where the subscripts
exponentiate.
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Constructing the Ni’s

Basis: N0(I, J) says “I=J OR I⊦J.”
If I represents variables yj,A and J 

represents variables zj,A, we say I=J by 
the boolean expression for yj,A = zj,A for 
all j and A.
 Remember: a=b is                                 

(a AND b) OR (NOT a AND NOT b).
I⊦J uses the same idea as for SAT.
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Induction

Suppose we have constructed Ni and 
want to construct Ni+1.
Ni+1(I, J) = “there exists K such that 

Ni(I, K) and Ni(K, J).”
We must be careful:
We must write O(p(n)) formulas, each in 

polynomial time.
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Induction – (2)

If each formula used two copies of the 
previous formula, times and sizes would 
exponentiate.
Trick: use  to make one copy of Ni

serve for two.
Ni+1(I, J) = “if (P,Q) = (I,K) or (P,Q) = 

(K,J), then Ni(P, Q).”
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Induction – (3)

More formally, Ni+1(I, J) = 
(K)(P)(Q)(

((P  I OR Q  K) AND

(P  K OR Q  J)) OR

Ni(P, Q))

Express as
boolean
variables

Pair (P,Q) is
neither (I,K)
nor (K,J)

Or P⊦*Q in at most 2i moves.
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Induction – (4)

We can thus write Ni+1 in time O(p(n)) 
plus the time it takes to write Ni.
Remember: N is Nk, where k = log2cp(n)

= O(p(n)).
Thus, we can write N in time O(p2(n)).
Finished!! The whole QBF for w can be 

written in polynomial time.


