Decision Properties of Regular Languages

General Discussion of "Properties"

The Pumping Lemma

Membership, Emptiness, Etc.

Properties of Language Classes

- A language class is a set of languages.
 - We have one example: the regular languages.
 - We'll see many more in this class.
- Language classes have two important kinds of properties:
 - 1. Decision properties.
 - 2. Closure properties.

Representation of Languages

- Representations can be formal or informal.
- Example (formal): represent a language by a RE or DFA defining it.
- Example: (informal): a logical or prose statement about its strings:
 - ◆ {0ⁿ1ⁿ | n is a nonnegative integer}
 - "The set of strings consisting of some number of 0's followed by the same number of 1's."

Decision Properties

- ◆A decision property for a class of languages is an algorithm that takes a formal description of a language (e.g., a DFA) and tells whether or not some property holds.
- Example: Is language L empty?

Subtle Point: Representation Matters

- ◆You might imagine that the language is described informally, so if my description is "the empty language" then yes, otherwise no.
- But the representation is a DFA (or a RE that you will convert to a DFA).
- \bullet Can you tell if L(A) = \emptyset for DFA A?

Why Decision Properties?

- When we talked about protocols represented as DFA's, we noted that important properties of a good protocol were related to the language of the DFA.
- Example: "Does the protocol terminate?"
 = "Is the language finite?"
- Example: "Can the protocol fail?" = "Is the language nonempty?"

Why Decision Properties – (2)

- •We might want a "smallest" representation for a language, e.g., a minimum-state DFA or a shortest RE.
- If you can't decide "Are these two languages the same?"
 - I.e., do two DFA's define the same language?

You can't find a "smallest."

Closure Properties

- ◆ A *closure property* of a language class says that given languages in the class, an operator (e.g., union) produces another language in the same class.
- ◆Example: the regular languages are obviously closed under union, concatenation, and (Kleene) closure.
 - Use the RE representation of languages.

Why Closure Properties?

- Helps construct representations.
- 2. Helps show (informally described) languages not to be in the class.

Example: Use of Closure Property

- We can easily prove $L_1 = \{0^n1^n \mid n \ge 0\}$ is not a regular language.
- ◆L₂ = the set of strings with an = number of 0's and 1's isn't either, but that fact is trickier to prove.
- ◆Regular languages are closed under ○.
- ◆ If L₂ were regular, then L₂ \cap L($\mathbf{0}^*\mathbf{1}^*$) = L₁ would be, but it isn't.

The Membership Question

- Our first decision property is the question: "is string w in regular language L?"
- Assume L is represented by a DFA A.
- Simulate the action of A on the sequence of input symbols forming w.

What if the Regular Language Is not Represented by a DFA?

There is a circle of conversions from one form to another:

The Emptiness Problem

- Given a regular language, does the language contain any string at all.
- Assume representation is DFA.
- Construct the transition graph.
- Compute the set of states reachable from the start state.
- If any final state is reachable, then yes, else no.

The Infiniteness Problem

- Is a given regular language infinite?
- Start with a DFA for the language.
- ◆Key idea: if the DFA has n states, and the language contains any string of length n or more, then the language is infinite.
- Otherwise, the language is surely finite.
 - Limited to strings of length n or less.

Proof of Key Idea

- ◆ If an n-state DFA accepts a string w of length n or more, then there must be a state that appears twice on the path labeled w from the start state to a final state.
- Because there are at least n+1 states along the path.

Proof - (2)

Then xy^iz is in the language for all $i \ge 0$.

Since y is not ϵ , we see an infinite number of strings in L.

Infiniteness - Continued

- We do not yet have an algorithm.
- ◆There are an infinite number of strings of length > n, and we can't test them all.
- ◆ Second key idea: if there is a string of length ≥ n (= number of states) in L, then there is a string of length between n and 2n-1.

Proof of 2nd Key Idea

- Remember:
- •We can choose y to be the first cycle on the path.
- ♦ So $|xy| \le n$; in particular, $1 \le |y| \le n$.
- Thus, if w is of length 2n or more, there is a shorter string in L that is still of length at least n.
- Keep shortening to reach [n, 2n-1].

Completion of Infiniteness Algorithm

- ◆Test for membership all strings of length between n and 2n-1.
 - If any are accepted, then infinite, else finite.
- A terrible algorithm.
- ◆Better: find cycles between the start state and a final state.

Finding Cycles

- 1. Eliminate states not reachable from the start state.
- 2. Eliminate states that do not reach a final state.
- 3. Test if the remaining transition graph has any cycles.

The Pumping Lemma

- We have, almost accidentally, proved a statement that is quite useful for showing certain languages are not regular.
- ◆ Called the *pumping lemma for regular languages*.

Statement of the Pumping Lemma

For every regular language L

There is an integer n, such that

Number of states of DFA for L

For every string w in L of length \geq n We can write w = xyz such that:

- 1. $|xy| \leq n$.
- 2. |y| > 0.
- 3. For all $i \ge 0$, xy^iz is in L.

Labels along first cycle on path labeled w

Example: Use of Pumping Lemma

- ◆We have claimed {0^k1^k | k ≥ 1} is not a regular language.
- Suppose it were. Then there would be an associated n for the pumping lemma.
- Let $w = 0^n 1^n$. We can write w = xyz, where x and y consist of 0's, and $y \neq \epsilon$.
- But then xyyz would be in L, and this string has more 0's than 1's.

Decision Property: Equivalence

- Given regular languages L and M, is L = M?
- Algorithm involves constructing the product DFA from DFA's for L and M.
- Let these DFA's have sets of states Q and R, respectively.
- Product DFA has set of states Q × R.
 - I.e., pairs [q, r] with q in Q, r in R.

Product DFA - Continued

- •Start state = $[q_0, r_0]$ (the start states of the DFA's for L, M).
- Transitions: $\delta([q,r], a) = [\delta_L(q,a), \delta_M(r,a)]$
 - δ_L , δ_M are the transition functions for the DFA's of L, M.
 - That is, we simulate the two DFA's in the two state components of the product DFA.

Example: Product DFA

Equivalence Algorithm

- ◆Make the final states of the product DFA be those states [q, r] such that exactly one of q and r is a final state of its own DFA.
- Thus, the product accepts w iff w is in exactly one of L and M.

Example: Equivalence

Equivalence Algorithm – (2)

- The product DFA's language is empty iff L = M.
- But we already have an algorithm to test whether the language of a DFA is empty.

Decision Property: Containment

- ◆Given regular languages L and M, is L ⊆ M?
- Algorithm also uses the product automaton.
- ◆How do you define the final states [q, r] of the product so its language is empty iff L

 M?

Answer: q is final; r is not.

Example: Containment

Note: the only final state is unreachable, so containment holds.

The Minimum-State DFA for a Regular Language

- ◆In principle, since we can test for equivalence of DFA's we can, given a DFA A find the DFA with the fewest states accepting L(A).
- Test all smaller DFA's for equivalence with A.
- But that's a terrible algorithm.

Efficient State Minimization

- Construct a table with all pairs of states.
- ◆ If you find a string that distinguishes two states (takes exactly one to an accepting state), mark that pair.
- Algorithm is a recursion on the length of the shortest distinguishing string.

State Minimization – (2)

- Basis: Mark a pair if exactly one is a final state.
- •Induction: mark [q, r] if there is some input symbol a such that $[\delta(q,a), \delta(r,a)]$ is marked.
- After no more marks are possible, the unmarked pairs are equivalent and can be merged into one state.

Transitivity of "Indistinguishable"

- If state p is indistinguishable from q, and q is indistinguishable from r, then p is indistinguishable from r.
- ◆Proof: The outcome (accept or don't) of p and q on input w is the same, and the outcome of q and r on w is the same, then likewise the outcome of p and r.

Constructing the Minimum-State DFA

- ◆Suppose q₁,...,q_k are indistinguishable states.
- Replace them by one state q.
- Then $\delta(q_1, a), ..., \delta(q_k, a)$ are all indistinguishable states.
 - Key point: otherwise, we should have marked at least one more pair.
- Let $\delta(q, a)$ = the representative state for that group.

Example: State Minimization

	r	b		r	b	
→ {1}	{2,4}	{5}	$\rightarrow A$		С	
{2,4}	{2,4,6,8}	{1,3,5,7}		D	E	Here it is
	{2,4,6,8}			D		with more
	{2,4,6,8}		}	D D	G	convenient
	{2,4,6,8}		* F			state names
* {1,3,7,9}			, G			
* {1,3,5,7,9}	{2,4,6,8}	{1,3,5,7,9	}			

Remember this DFA? It was constructed for the chessboard NFA by the subset construction.

Start with marks for the pairs with one of the final states F or G. 44

Input r gives no help, because the pair [B, D] is not marked.

	r	b
→ A	В	С
В	D	Ε
C	D	F
D	D	G
Ε	D	G
* F	D	С
* G	D	G

```
G F E D C B
A X X X X X X
B X X X X X X
C X X
D X X
E X X
F X
```

But input b distinguishes {A,B,F} from {C,D,E,G}. For example, [A, C] gets marked because [C, F] is marked.

	r	b
→ A	В	С
В	D	Ε
C	D	F
D	D	G
Ε	D	G
* F	D	С
* G	D	G

[C, D] and [C, E] are marked because of transitions on b to marked pair [F, G].

		r	b
	Α	В	С
	В	D	Ε
	C	D	F
	D	D	G
	E	D	G
*	F	D	C
*	G	D	G

[A, B] is marked because of transitions on r to marked pair [B, D].

[D, E] can never be marked, because on both inputs they go to the same state.

Example – Concluded

Replace D and E by H.
Result is the minimum-state DFA.

Eliminating Unreachable States

- Unfortunately, combining indistinguishable states could leave us with unreachable states in the "minimum-state" DFA.
- Thus, before or after, remove states that are not reachable from the start state.

Clincher

- We have combined states of the given DFA wherever possible.
- Could there be another, completely unrelated DFA with fewer states?
- No. The proof involves minimizing the DFA we derived with the hypothetical better DFA.

Proof: No Unrelated, Smaller DFA

- Let A be our minimized DFA; let B be a smaller equivalent.
- Consider an automaton with the states of A and B combined.
- Use "distinguishable" in its contrapositive form:
 - If states q and p are indistinguishable, so are $\delta(q, a)$ and $\delta(p, a)$.

Inferring Indistinguishability

Inductive Hypothesis

- Every state q of A is indistinguishable from some state of B.
- Induction is on the length of the shortest string taking you from the start state of A to q.

Proof - (2)

- Basis: Start states of A and B are indistinguishable, because L(A) = L(B).
- ◆Induction: Suppose w = xa is a shortest string getting A to state q.
- By the IH, x gets A to some state r that is indistinguishable from some state p of B.
- Then $\delta(r, a) = q$ is indistinguishable from $\delta(p, a)$.

Proof - (3)

- However, two states of A cannot be indistinguishable from the same state of B, or they would be indistinguishable from each other.
 - Violates transitivity of "indistinguishable."
- Thus, B has at least as many states as A.