Closure Properties of Regular Languages

Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism

Closure Properties

Recall a closure property is a statement that a certain operation on languages, when applied to languages in a class (e.g., the regular languages), produces a result that is also in that class.

For regular languages, we can use any of its representations to prove a closure property.

Closure Under Union

• If L and M are regular languages, so is $L \cup M$.

Proof: Let L and M be the languages of regular expressions R and S, respectively.

Then R+S is a regular expression whose language is L \cup M.

Closure Under Concatenation and Kleene Closure

- RS is a regular expression whose language is LM.
- R* is a regular expression whose language is L*.

Closure Under Intersection

- If L and M are regular languages, then so is $L \cap M$.
- Proof: Let A and B be DFA's whose languages are L and M, respectively.
- Construct C, the product automaton of A and B.
- Make the final states of C be the pairs consisting of final states of both A and B.

Example: Product DFA for Intersection

Closure Under Difference

If L and M are regular languages, then so is L – M = strings in L but not M.
 Proof: Let A and B be DFA's whose

- languages are L and M, respectively.
- Construct C, the product automaton of A and B.

 Make the final states of C be the pairs where A-state is final but B-state is not.

Example: Product DFA for Difference

Notice: difference is the empty language

Closure Under Complementation

The *complement* of a language L (with respect to an alphabet Σ such that Σ* contains L) is Σ* – L.

 Since Σ* is surely regular, the complement of a regular language is always regular.

Closure Under Reversal

- Recall example of a DFA that accepted the binary strings that, as integers were divisible by 23.
- We said that the language of binary strings whose reversal was divisible by 23 was also regular, but the DFA construction was very tricky.
- Good application of reversal-closure.

Closure Under Reversal – (2)

 Given language L, L^R is the set of strings whose reversal is in L.

Example: L = {0, 01, 100};
L^R = {0, 10, 001}.

Proof: Let E be a regular expression for L.

We show how to reverse E, to provide a regular expression E^R for L^R.

Reversal of a Regular Expression

- **Basis**: If E is a symbol a, ϵ , or \emptyset , then $E^{R} = E$.
- Induction: If E is
 - F+G, then $E^R = F^R + G^R$.
 - FG, then $E^{R} = G^{R}F^{R}$
 - F^* , then $E^R = (F^R)^*$.

Example: Reversal of a RE

• Let $E = 01^* + 10^*$. • $E^R = (01^* + 10^*)^R = (01^*)^R + (10^*)^R$ • $= (1^*)^R 0^R + (0^*)^R 1^R$ • $= (1^R)^* 0 + (0^R)^* 1$ • $= 1^* 0 + 0^* 1$.

Homomorphisms

A *homomorphism* on an alphabet is a function that gives a string for each symbol in that alphabet.
Example: h(0) = ab; h(1) = €.
Extend to strings by h(a₁...aₙ) = h(a₁)...h(aₙ).
Example: h(01010) = ababab.

Closure Under Homomorphism

If L is a regular language, and h is a homomorphism on its alphabet, then h(L) = {h(w) | w is in L} is also a regular language.
Proof: Let E be a regular expression for L.
Apply h to each symbol in E.

Language of resulting RE is h(L).

Example: Closure under Homomorphism • Let $h(0) = ab; h(1) = \epsilon$. Let L be the language of regular expression **01*** + **10***. Then h(L) is the language of regular expression $ab\epsilon^* + \epsilon(ab)^*$. Note: use parentheses to enforce the proper grouping.

Example – Continued

 $\diamond ab\epsilon^* + \epsilon(ab)^*$ can be simplified. $\mathbf{e}^* = \mathbf{e}$, so $\mathbf{a}\mathbf{b}\mathbf{e}^* = \mathbf{a}\mathbf{b}\mathbf{e}$. \mathbf{e} is the identity under concatenation. • That is, $\epsilon E = E\epsilon = E$ for any RE *E*. Thus, $abe^* + e(ab)^* = abe + e(ab)^*$ $= ab + (ab)^{*}$. \bullet Finally, L(**ab**) is contained in L((**ab**)*), so a RE for h(L) is $(ab)^*$.

Inverse Homomorphisms

Let h be a homomorphism and L a language whose alphabet is the output language of h.

 $h^{-1}(L) = \{w \mid h(w) \text{ is in } L\}.$

Example: Inverse Homomorphism

Let h(0) = ab; h(1) = €.
Let L = {abab, baba}.
h⁻¹(L) = the language with two 0's and any number of 1's = L(1*01*01*).

Notice: no string maps to baba; any string with exactly two 0's maps to abab.

Closure Proof for Inverse Homomorphism

Start with a DFA A for L.

- Construct a DFA B for h⁻¹(L) with:
 - The same set of states.
 - The same start state.
 - The same final states.
 - Input alphabet = the symbols to which homomorphism h applies.

Proof - (2)

The transitions for B are computed by applying h to an input symbol a and seeing where A would go on sequence of input symbols h(a).
 Formally, δ_R(q, a) = δ_A(q, h(a)).

Example: Inverse Homomorphism Construction

Proof - (3)

Induction on |w| shows that δ_B(q₀, w) = δ_A(q₀, h(w)).
 Basis: w = ε.
 δ_B(q₀, ε) = q₀, and δ_A(q₀, h(ε)) = δ_A(q₀, ε) = q₀.

Proof - (4)

 \bullet Induction: Let w = xa; assume IH for x. $\blacklozenge \delta_{\mathsf{B}}(\mathsf{q}_0, \mathsf{w}) = \delta_{\mathsf{B}}(\delta_{\mathsf{B}}(\mathsf{q}_0, \mathsf{x}), \mathsf{a}).$ $\blacklozenge = \delta_{B}(\delta_{A}(q_{0}, h(x)), a)$ by the IH. $\mathbf{A} = \delta_{A}(\delta_{A}(q_{0}, h(x)), h(a))$ by definition of the DFA B. $\mathbf{A} = \mathbf{\delta}_{A}(q_{0}, h(x)h(a))$ by definition of the extended delta.

 $\blacklozenge = \delta_A(q_0, h(w))$ by def. of homomorphism.