
1

Closure Properties of Regular
Languages

Union, Intersection, Difference,
Concatenation, Kleene Closure,

Reversal, Homomorphism, Inverse
Homomorphism

2

Closure Properties

Recall a closure property is a statement
that a certain operation on languages,
when applied to languages in a class
(e.g., the regular languages), produces
a result that is also in that class.
For regular languages, we can use any

of its representations to prove a closure
property.

3

Closure Under Union

If L and M are regular languages, so is
L M.
Proof: Let L and M be the languages of

regular expressions R and S,
respectively.
Then R+S is a regular expression

whose language is L M.

4

Closure Under Concatenation
and Kleene Closure

Same idea:
 RS is a regular expression whose language

is LM.
 R* is a regular expression whose language

is L*.

5

Closure Under Intersection

If L and M are regular languages, then
so is L M.
Proof: Let A and B be DFA’s whose

languages are L and M, respectively.
Construct C, the product automaton of A

and B.
Make the final states of C be the pairs

consisting of final states of both A and B.

6

Example: Product DFA for
Intersection

A

C

B

D

0
1

0, 1

1

1

0
0

[A,C] [A,D]
0

[B,C]

1

0

1

0
1

[B,D]

0

1

7

Closure Under Difference

If L and M are regular languages, then
so is L – M = strings in L but not M.
Proof: Let A and B be DFA’s whose

languages are L and M, respectively.
Construct C, the product automaton of A

and B.
Make the final states of C be the pairs

where A-state is final but B-state is not.

8

Example: Product DFA for
Difference

A

C

B

D

0
1

0, 1

1

1

0
0

[A,C] [A,D]
0

[B,C]

1

0

1

0
1

[B,D]

0

1

Notice: difference
is the empty language

9

Closure Under Complementation

The complement of a language L (with
respect to an alphabet Σ such that Σ*
contains L) is Σ* – L.
Since Σ* is surely regular, the

complement of a regular language is
always regular.

10

Closure Under Reversal

Recall example of a DFA that accepted
the binary strings that, as integers were
divisible by 23.
We said that the language of binary

strings whose reversal was divisible by
23 was also regular, but the DFA
construction was very tricky.
Good application of reversal-closure.

11

Closure Under Reversal – (2)

Given language L, LR is the set of strings
whose reversal is in L.
Example: L = {0, 01, 100};

LR = {0, 10, 001}.
Proof: Let E be a regular expression for L.
We show how to reverse E, to provide a

regular expression ER for LR.

12

Reversal of a Regular Expression

Basis: If E is a symbol a, ε, or ∅, then
ER = E.
Induction: If E is
 F+G, then ER = FR + GR.
 FG, then ER = GRFR

 F*, then ER = (FR)*.

13

Example: Reversal of a RE

Let E = 01* + 10*.
ER = (01* + 10*)R = (01*)R + (10*)R

= (1*)R0R + (0*)R1R

= (1R)*0 + (0R)*1
= 1*0 + 0*1.

14

Homomorphisms

A homomorphism on an alphabet is a
function that gives a string for each
symbol in that alphabet.
Example: h(0) = ab; h(1) = ε.
Extend to strings by h(a1…an) =

h(a1)…h(an).
Example: h(01010) = ababab.

15

Closure Under Homomorphism

If L is a regular language, and h is a
homomorphism on its alphabet, then h(L)
= {h(w) | w is in L} is also a regular
language.
Proof: Let E be a regular expression for L.
Apply h to each symbol in E.
Language of resulting RE is h(L).

16

Example: Closure under
Homomorphism

Let h(0) = ab; h(1) = ε.
Let L be the language of regular

expression 01* + 10*.
Then h(L) is the language of regular

expression abε* + ε(ab)*.

Note: use parentheses
to enforce the proper
grouping.

17

Example – Continued

abε* + ε(ab)* can be simplified.
ε* = ε, so abε* = abε.
ε is the identity under concatenation.
 That is, εE = Eε = E for any RE E.

Thus, abε* + ε(ab)* = abε + ε(ab)*
= ab + (ab)*.
Finally, L(ab) is contained in L((ab)*),

so a RE for h(L) is (ab)*.

18

Inverse Homomorphisms

Let h be a homomorphism and L a
language whose alphabet is the output
language of h.
h-1(L) = {w | h(w) is in L}.

19

Example: Inverse Homomorphism

Let h(0) = ab; h(1) = ε.
Let L = {abab, baba}.
h-1(L) = the language with two 0’s and

any number of 1’s = L(1*01*01*).

Notice: no string maps to
baba; any string with exactly
two 0’s maps to abab.

20

Closure Proof for Inverse
Homomorphism

Start with a DFA A for L.
Construct a DFA B for h-1(L) with:
 The same set of states.
 The same start state.
 The same final states.
 Input alphabet = the symbols to which

homomorphism h applies.

21

Proof – (2)

The transitions for B are computed by
applying h to an input symbol a and
seeing where A would go on sequence
of input symbols h(a).
Formally, δB(q, a) = δA(q, h(a)).

22

Example: Inverse Homomorphism
Construction

A

C

B

a

a

a

b b

b
C

B

A

h(0) = ab
h(1) = ε

1

1

1 Since
h(1) = ε

0

0

, 0

Since
h(0) = ab

23

Proof – (3)

Induction on |w| shows that δB(q0, w)
= δA(q0, h(w)).
Basis: w = ε.
δB(q0, ε) = q0, and δA(q0, h(ε)) =
δA(q0, ε) = q0.

24

Proof – (4)

Induction: Let w = xa; assume IH for x.
δB(q0, w) = δB(δB(q0, x), a).
= δB(δA(q0, h(x)), a) by the IH.
= δA(δA(q0, h(x)), h(a)) by definition of

the DFA B.
= δA(q0, h(x)h(a)) by definition of the

extended delta.
= δA(q0, h(w)) by def. of homomorphism.

