Closure Properties of Regular Languages

Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism
Closure Properties

- Recall a closure property is a statement that a certain operation on languages, when applied to languages in a class (e.g., the regular languages), produces a result that is also in that class.

- For regular languages, we can use any of its representations to prove a closure property.
Closure Under Union

- If L and M are regular languages, so is $L \cup M$.
- **Proof**: Let L and M be the languages of regular expressions R and S, respectively.
- Then $R+S$ is a regular expression whose language is $L \cup M$.
Closure Under Concatenation and Kleene Closure

◆ Same idea:
 ◆ RS is a regular expression whose language is LM.
 ◆ R^* is a regular expression whose language is L^*.
Closure Under Intersection

◆ If \(L \) and \(M \) are regular languages, then so is \(L \cap M \).

◆ **Proof**: Let \(A \) and \(B \) be DFA’s whose languages are \(L \) and \(M \), respectively.

◆ Construct \(C \), the product automaton of \(A \) and \(B \).

◆ Make the final states of \(C \) be the pairs consisting of final states of both \(A \) and \(B \).
Example: Product DFA for Intersection

\[
\begin{align*}
[A, C] & \quad 0, 1 \\
[B, C] & \quad 1, 1, 1 \\
[B, D] & \quad 1, 0, 0 \\
[A, D] & \quad 0, 0 \\
\end{align*}
\]
Closure Under Difference

◆ If L and M are regular languages, then so is \(L - M \) = strings in L but not M.

◆ Proof: Let A and B be DFA’s whose languages are L and M, respectively.

◆ Construct C, the product automaton of A and B.

◆ Make the final states of C be the pairs where A-state is final but B-state is not.
Example: Product DFA for Difference

Notice: difference is the empty language
Closure Under Complementation

◆ The complement of a language \(L \) (with respect to an alphabet \(\Sigma \) such that \(\Sigma^* \) contains \(L \)) is \(\Sigma^* - L \).

◆ Since \(\Sigma^* \) is surely regular, the complement of a regular language is always regular.
Closure Under Reversal

◆ Recall example of a DFA that accepted the binary strings that, as integers were divisible by 23.

◆ We said that the language of binary strings whose reversal was divisible by 23 was also regular, but the DFA construction was very tricky.

◆ Good application of reversal-closure.
Closure Under Reversal – (2)

Given language L, L^R is the set of strings whose reversal is in L.

Example: $L = \{0, 01, 100\}$; $L^R = \{0, 10, 001\}$.

Proof: Let E be a regular expression for L. We show how to reverse E, to provide a regular expression E^R for L^R.
Reversal of a Regular Expression

Basis: If E is a symbol a, ϵ, or \emptyset, then $E^R = E$.

Induction: If E is

- $F+G$, then $E^R = F^R + G^R$.
- FG, then $E^R = G^RF^R$.
- F^*, then $E^R = (F^R)^*$.
Example: Reversal of a RE

◆ Let $E = 01^* + 10^*$.
◆ $E^R = (01^* + 10^*)^R = (01^*)^R + (10^*)^R$
◆ $= (1^*)^R0^R + (0^*)^R1^R$
◆ $= (1^R)*0 + (0^R)*1$
◆ $= 1*0 + 0*1$.
Homomorphisms

◆ A *homomorphism* on an alphabet is a function that gives a string for each symbol in that alphabet.
◆ **Example**: $h(0) = ab; h(1) = \varepsilon$.
◆ Extend to strings by $h(a_1 \ldots a_n) = h(a_1) \ldots h(a_n)$.
◆ **Example**: $h(01010) = ababab$.
Closure Under Homomorphism

- If L is a regular language, and h is a homomorphism on its alphabet, then $h(L) = \{h(w) \mid w \text{ is in } L\}$ is also a regular language.

Proof: Let E be a regular expression for L.
- Apply h to each symbol in E.
- Language of resulting RE is h(L).
Example: Closure under Homomorphism

Let $h(0) = ab$; $h(1) = \epsilon$.

Let L be the language of regular expression $01^* + 10^*$.

Then $h(L)$ is the language of regular expression $ab\epsilon^* + \epsilon(ab)^*$.

Note: use parentheses to enforce the proper grouping.
Example – Continued

◆ $ab\epsilon^* + \epsilon(ab)^*$ can be simplified.
◆ $\epsilon^* = \epsilon$, so $ab\epsilon^* = ab\epsilon$.
◆ ϵ is the identity under concatenation.
 ◆ That is, $\epsilon E = E\epsilon = E$ for any RE E.
◆ Thus, $ab\epsilon^* + \epsilon(ab)^* = ab\epsilon + \epsilon(ab)^*$
 $= ab + (ab)^*$.
◆ Finally, $L(ab)$ is contained in $L((ab)^*)$, so a RE for $h(L)$ is $(ab)^*$.
Inverse Homomorphisms

Let h be a homomorphism and L a language whose alphabet is the output language of h.

$h^{-1}(L) = \{w \mid h(w) \text{ is in } L\}$.
Example: Inverse Homomorphism

- Let $h(0) = ab; \ h(1) = \epsilon$.
- Let $L = \{abab, baba\}$.
- $h^{-1}(L) =$ the language with two 0’s and any number of 1’s $= L(1^*01^*01^*)$.

Notice: no string maps to baba; any string with exactly two 0’s maps to abab.
Closure **Proof** for Inverse Homomorphism

- Start with a DFA A for L.
- Construct a DFA B for $h^{-1}(L)$ with:
 - The same set of states.
 - The same start state.
 - The same final states.
 - Input alphabet = the symbols to which homomorphism h applies.
Proof – (2)

The transitions for B are computed by applying h to an input symbol a and seeing where A would go on sequence of input symbols $h(a)$.

Formally, $\delta_B(q, a) = \delta_A(q, h(a))$.

Example: Inverse Homomorphism Construction

\[
\begin{align*}
\text{h}(0) &= ab \\
\text{h}(1) &= \epsilon
\end{align*}
\]

Since \(h(1) = \epsilon \)

Since \(h(0) = ab \)
Proof – (3)

◆ Induction on $|w|$ shows that $\delta_B(q_0, w) = \delta_A(q_0, h(w))$.

◆ **Basis:** $w = \epsilon$.

◆ $\delta_B(q_0, \epsilon) = q_0$, and $\delta_A(q_0, h(\epsilon)) = \delta_A(q_0, \epsilon) = q_0$.
Proof – (4)

- **Induction**: Let \(w = xa \); assume IH for \(x \).
- \(\delta_B(q_0, w) = \delta_B(\delta_B(q_0, x), a) \).
- \(= \delta_B(\delta_A(q_0, h(x)), a) \) by the IH.
- \(= \delta_A(\delta_A(q_0, h(x)), h(a)) \) by definition of the DFA B.
- \(= \delta_A(q_0, h(x)h(a)) \) by definition of the extended delta.
- \(= \delta_A(q_0, h(w)) \) by def. of homomorphism.