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Closure Properties of Regular 
Languages

Union, Intersection, Difference, 
Concatenation, Kleene Closure, 

Reversal, Homomorphism, Inverse 
Homomorphism
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Closure Properties

Recall a closure property is a statement 
that a certain operation on languages, 
when applied to languages in a class 
(e.g., the regular languages), produces 
a result that is also in that class.
For regular languages, we can use any 

of its representations to prove a closure 
property.
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Closure Under Union

If L and M are regular languages, so is 
L  M.
Proof: Let L and M be the languages of 

regular expressions R and S, 
respectively.
Then R+S is a regular expression 

whose language is L  M.
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Closure Under Concatenation 
and Kleene Closure

Same idea:
 RS is a regular expression whose language 

is LM.
 R* is a regular expression whose language 

is L*.
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Closure Under Intersection

If L and M are regular languages, then 
so is L  M.
Proof: Let A and B be DFA’s whose 

languages are L and M, respectively.
Construct C, the product automaton of A 

and B.
Make the final states of C be the pairs 

consisting of final states of both A and B.
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Example: Product DFA for 
Intersection
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Closure Under Difference

If L and M are regular languages, then 
so is L – M = strings in L but not M.
Proof: Let A and B be DFA’s whose 

languages are L and M, respectively.
Construct C, the product automaton of A 

and B.
Make the final states of C be the pairs 

where A-state is final but B-state is not.
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Example: Product DFA for 
Difference
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is the empty language
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Closure Under Complementation

The complement of a language L (with 
respect to an alphabet Σ such that Σ* 
contains L) is Σ* – L.
Since Σ* is surely regular, the 

complement of a regular language is 
always regular.
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Closure Under Reversal

Recall example of a DFA that accepted 
the binary strings that, as integers were 
divisible by 23.
We said that the language of binary 

strings whose reversal was divisible by 
23 was also regular, but the DFA 
construction was very tricky.
Good application of reversal-closure.
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Closure Under Reversal – (2)

Given language L, LR is the set of strings 
whose reversal is in L.
Example: L = {0, 01, 100};                     

LR = {0, 10, 001}.
Proof: Let E be a regular expression for L.
We show how to reverse E, to provide a 

regular expression ER for LR.
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Reversal of a Regular Expression

Basis: If E is a symbol a, ε, or ∅, then 
ER = E.
Induction: If E is
 F+G, then ER = FR + GR.
 FG, then ER = GRFR

 F*, then ER = (FR)*.
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Example: Reversal of a RE

Let E = 01* + 10*.
ER = (01* + 10*)R = (01*)R + (10*)R

= (1*)R0R + (0*)R1R

= (1R)*0 + (0R)*1
= 1*0 + 0*1.
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Homomorphisms

A homomorphism  on an alphabet is a 
function that gives a string for each 
symbol in that alphabet.
Example: h(0) = ab; h(1) = ε.
Extend to strings by h(a1…an) = 

h(a1)…h(an).
Example: h(01010) = ababab.
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Closure Under Homomorphism

If L is a regular language, and h is a 
homomorphism on its alphabet, then h(L)
= {h(w) | w is in L} is also a regular 
language.
Proof: Let E be a regular expression for L.
Apply h to each symbol in E.
Language of resulting RE is h(L).
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Example: Closure under 
Homomorphism

Let h(0) = ab; h(1) = ε.
Let L be the language of regular 

expression 01* + 10*.
Then h(L) is the language of regular 

expression abε* + ε(ab)*.

Note: use parentheses
to enforce the proper
grouping.
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Example – Continued

abε* + ε(ab)* can be simplified.
ε* = ε, so abε* = abε.
ε is the identity under concatenation.
 That is, εE = Eε = E for any RE E.

Thus, abε* + ε(ab)* = abε + ε(ab)* 
= ab + (ab)*.
Finally, L(ab) is contained in L((ab)*), 

so a RE for h(L) is (ab)*.
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Inverse Homomorphisms

Let h be a homomorphism and L a 
language whose alphabet is the output 
language of h.
h-1(L) = {w | h(w) is in L}.
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Example: Inverse Homomorphism

Let h(0) = ab; h(1) = ε.
Let L = {abab, baba}.
h-1(L) = the language with two 0’s and 

any number of 1’s = L(1*01*01*).

Notice: no string maps to
baba; any string with exactly
two 0’s maps to abab.
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Closure Proof for Inverse 
Homomorphism

Start with a DFA A for L.
Construct a DFA B  for h-1(L) with:
 The same set of states.
 The same start state.
 The same final states.
 Input alphabet = the symbols to which 

homomorphism h applies.
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Proof – (2)

The transitions for B are computed by 
applying h to an input symbol a and 
seeing where A would go on sequence 
of input symbols h(a).
Formally, δB(q, a) = δA(q, h(a)).
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Example: Inverse Homomorphism 
Construction
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Proof – (3)

Induction on |w| shows that δB(q0, w) 
= δA(q0, h(w)).
Basis: w = ε.
δB(q0, ε) = q0, and δA(q0, h(ε)) = 
δA(q0, ε) = q0.
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Proof – (4)

Induction: Let w = xa; assume IH for x.
δB(q0, w) = δB(δB(q0, x), a).
= δB(δA(q0, h(x)), a) by the IH.
= δA(δA(q0, h(x)), h(a)) by definition of 

the DFA B.
= δA(q0, h(x)h(a)) by definition of the 

extended delta.
= δA(q0, h(w)) by def. of homomorphism. 


