Undecidability

Everything is an Integer
Countable and Uncountable Sets
Turing Machines
Recursive and Recursively
Enumerable Languages

Integers, Strings, and Other Things

Data types have become very important as a programming tool.

- But at another level, there is only one type, which you may think of as integers or strings.
- Key point: Strings that are programs are just another way to think about the same one data type.

Example: Text

Strings of ASCII or Unicode characters can be thought of as binary strings, with 8 or 16 bits/character.

Binary strings can be thought of as integers.
-It makes sense to talk about "the i-th string."

Binary Strings to Integers

-There's a small glitch:

- If you think simply of binary integers, then strings like 101, 0101, 00101, ... all appear to be "the fifth string."
*Fix by prepending a " 1 " to the string before converting to an integer.
- Thus, 101, 0101, and 00101 are the $13^{\text {th }}$, $21^{\text {st }}$, and $37^{\text {th }}$ strings, respectively.

Example: Images

\checkmark Represent an image in (say) GIF.

- The GIF file is an ASCll string.

Convert string to binary.
Convert binary string to integer.
Now we have a notion of "the i-th image."

Example: Proofs

\checkmark A formal proof is a sequence of logical expressions, each of which follows from the ones before it.

Encode mathematical expressions of any kind in Unicode.
Convert expression to a binary string and then an integer.

Proofs - (2)

But a proof is a sequence of expressions, so we need a way to separate them.

- Also, we need to indicate which expressions are given.

Proofs - (3)

Quick-and-dirty way to introduce new symbols into binary strings:

1. Given a binary string, precede each bit by 0 .

- Example: 101 becomes 010001.

2. Use strings of two or more 1's as the special symbols.

- Example: 111 = "the following expression is given"; 11 = "end of expression."

Example: Encoding Proofs

Example: Programs

\checkmark Programs are just another kind of data.
\checkmark Represent a program in ASCII.
\checkmark Convert to a binary string, then to an integer.
-Thus, it makes sense to talk about "the i-th program."
-Hmm...There aren't all that many programs.

Finite Sets

\checkmark Intuitively, a finite set is a set for which there is a particular integer that is the count of the number of members.

- Example: $\{a, b, c\}$ is a finite set; its cardinality is 3.
\rightarrow It is impossible to find a 1-1 mapping between a finite set and a proper subset of itself.

Infinite Sets

\checkmark Formally, an infinite set is a set for which there is a 1-1 correspondence between itself and a proper subset of itself.
\checkmark Example: the positive integers $\{1,2,3, \ldots\}$ is an infinite set.

- There is a $1-1$ correspondence $1<->2,2<->4$, $3<->6, \ldots$ between this set and a proper subset (the set of even integers).

Countable Sets

\checkmark A countable set is a set with a 1-1 correspondence with the positive integers.

- Hence, all countable sets are infinite.
- Example: All integers.
- $0<->1$; $-\mathrm{i}<->2 \mathrm{i} ;+\mathrm{i}<->2 \mathrm{i}+1$.
- Thus, order is $0,-1,1,-2,2,-3,3, \ldots$

Examples: set of binary strings, set of J ava programs.

Example: Pairs of Integers

\checkmark Order the pairs of positive integers first by sum, then by first component:
$\rightarrow[1,1],[2,1],[1,2],[3,1],[2,2],[1,3]$, [4,1], [3,2],..., [1,4], [5,1],...
\checkmark Interesting exercise: figure out the function $f(i, j)$ such that the pair $[i, j]$ corresponds to the integer $f(i, j)$ in this order.

Enumerations

\checkmark An enumeration of a set is a 1-1 correspondence between the set and the positive integers.

- Thus, we have seen enumerations for strings, programs, proofs, and pairs of integers.

How Many Languages?

\checkmark Are the languages over $\{0,1\}^{*}$ countable?

- No; here's a proof.
- Suppose we could enumerate all
languages over $\{0,1\}^{*}$ and talk about "the i-th language."
-Consider the language $L=\{w \mid w$ is the i-th binary string and w is not in the i-th language\}.

Proof - Continued

\checkmark Clearly, L is a language over $\{0,1\}^{*}$.
Thus, it is the j-th language for some particular j .
Let x be the j-th string. i-th binary string and w is

- Is x in L?
- If so, x is not in L by definition of L.
- If not, then x is in L by definition of L.

Diagonalization Picture

Diagonalization Picture

Proof - Concluded

\checkmark We have a contradiction: x is neither in L nor not in L, so our sole assumption (that there was an enumeration of the languages) is wrong.
Comment: This is really bad; there are more languages than programs.
E.g., there are languages with no membership algorithm.

Hungarian Arguments

- We have shown the existence of a language with no algorithm to test for membership, but we have no way to exhibit a particular language with that property.
A proof by counting the things that fail and claiming they are fewer than all things is called a Hungarian argument.

Turing-Machine Theory

- The purpose of the theory of Turing machines is to prove that certain specific languages have no algorithm.
\checkmark Start with a language about Turing machines themselves.
Reductions are used to prove more common questions undecidable.

Picture of a Turing Machine

Action: based on the state and the tape symbol under

Infinite tape with squares containing tape symbols chosen from a finite alphabet

Why Turing Machines?

Why not deal with C programs or something like that?

- Answer: You can, but it is easier to prove things about TM's, because they are so simple.
- And yet they are as powerful as any computer.
- More so, in fact, since they have infinite memory.

Then Why Not Finite-State

 Machines to Model Computers?\rightarrow In principle, you could, but it is not instructive.
Programming models don't build in a limit on memory.

- In practice, you can go to Fry's and buy another disk.
But finite automata vital at the chip level (model-checking).

Turing-Machine Formalism

- A TM is described by:

1. A finite set of states (Q, typically).
2. An input alphabet (Σ, typically).
3. A tape alphabet (Γ, typically; contains Σ).
4. A transition function (δ, typically).
5. A start state $\left(\mathrm{q}_{0}\right.$, in Q , typically).
6. A blank symbol (B, in Г- Σ, typically).

- All tape except for the input is blank initially.

7. A set of final states ($\mathrm{F} \subseteq \mathrm{Q}$, typically).

Conventions

- a, b, ... are input symbols.
-..., X, Y, Z are tape symbols.
-..., w, x, y, z are strings of input symbols.
$\langle\alpha, \beta, \ldots$ are strings of tape symbols.

The Transition Function

- Takes two arguments:

1. A state, in Q .
2. A tape symbol in Γ.
$\delta(q, Z)$ is either undefined or a triple of the form ($\mathrm{p}, \mathrm{Y}, \mathrm{D}$).

- p is a state.
- Y is the new tape symbol.
- D is a direction, L or R .

Actions of the PDA

If $\delta(q, Z)=(p, Y, D)$ then, in state q, scanning Z under its tape head, the

TM:

1. Changes the state to p.
2. Replaces Z by Y on the tape.
3. Moves the head one square in direction D.

- $\mathrm{D}=\mathrm{L}$: move left; $\mathrm{D}=\mathrm{R}$; move right.

Example: Turing Machine

This TM scans its input right, looking for a 1.
\rightarrow If it finds one, it changes it to a 0 , goes to final state f, and halts.
\rightarrow If it reaches a blank, it changes it to a 1 and moves left.

Example: Turing Machine - (2)

States $=\{q$ (start), f (final) $\}$.
\rightarrow Input symbols $=\{0,1\}$.
\rightarrow Tape symbols $=\{0,1, B\}$.
$\delta(q, 0)=(q, 0, R)$.
$\langle\delta(q, 1)=(f, 0, R)$.
$\Delta(q, B)=(q, 1, L)$.

Simulation of TM

$$
\begin{aligned}
& \delta(q, 0)=(q, 0, R) \\
& \delta(q, 1)=(f, 0, R) \\
& \delta(q, B)=(q, 1, L)
\end{aligned}
$$

Simulation of TM

$$
\begin{aligned}
& \delta(q, 0)=(q, 0, R) \\
& \delta(q, 1)=(f, 0, R) \\
& \delta(q, B)=(q, 1, L)
\end{aligned}
$$

Simulation of TM

$$
\begin{aligned}
& \delta(q, 0)=(q, 0, R) \\
& \delta(q, 1)=(f, 0, R) \\
& \delta(q, B)=(q, 1, L)
\end{aligned}
$$

Simulation of TM

$$
\begin{aligned}
& \delta(q, 0)=(q, 0, R) \\
& \delta(q, 1)=(f, 0, R) \\
& \delta(q, B)=(q, 1, L)
\end{aligned}
$$

Simulation of TM

$$
\begin{aligned}
& \delta(q, 0)=(q, 0, R) \\
& \delta(q, 1)=(f, 0, R) \\
& \delta(q, B)=(q, 1, L)
\end{aligned}
$$

Simulation of TM

$$
\begin{aligned}
& \delta(q, 0)=(q, 0, R) \\
& \delta(q, 1)=(f, 0, R) \\
& \delta(q, B)=(q, 1, L)
\end{aligned}
$$

No move is possible. The TM halts and accepts.

I nstantaneous Descriptions of a Turing Machine

- Initially, a TM has a tape consisting of a string of input symbols surrounded by an infinity of blanks in both directions.
The TM is in the start state, and the head is at the leftmost input symbol.

TM ID's - (2)

An ID is a string $\alpha q \beta$, where $\alpha \beta$ is the tape between the leftmost and rightmost nonblanks (inclusive).
-The state q is immediately to the left of the tape symbol scanned.

- If q is at the right end, it is scanning B.
- If q is scanning a B at the left end, then consecutive B's at and to the right of q are part of α.

TM ID's - (3)

- As for PDA's we may use symbols + and \vdash^{*} to represent "becomes in one move" and "becomes in zero or more moves," respectively, on ID's.
- Example: The moves of the previous TM are $q 00+0 q 0+00 q+0 q 01+00 q 1+000 f$

Formal Definition of Moves

1. If $\delta(q, Z)=(p, Y, R)$, then

- $\alpha q Z \beta+\alpha Y p \beta$
- If Z is the blank B, then also $\alpha q-\alpha Y p$

2. If $\delta(q, Z)=(p, Y, L)$, then

- For any $X, \alpha X q Z \beta+\alpha p X Y \beta$
- In addition, $\mathrm{qZ} \mid \mathrm{pBY} \beta$

Languages of a TM

A TM defines a language by final state, as usual.
$\Delta L(M)=\left\{w\left|q_{0} w \vdash^{*}\right|\right.$, where I is an ID with a final state\}.
\checkmark Or, a TM can accept a language by halting.
$\forall H(M)=\left\{w \mid q_{0} w \vdash^{*} I\right.$, and there is no move possible from ID I\}.

Equivalence of Accepting and Halting

1. If $L=L(M)$, then there is a $T M M^{\prime}$ such that $L=H\left(M^{\prime}\right)$.
2. If $L=H(M)$, then there is a $T M M$ " such that $L=L\left(M^{\prime \prime}\right)$.

Proof of 1: Acceptance -> Halting

Modify M to become M^{\prime} as follows:

1. For each accepting state of M, remove any moves, so M^{\prime} halts in that state.
2. Avoid having M^{\prime} accidentally halt.

- Introduce a new state s, which runs to the right forever; that is $\delta(s, X)=(s, X, R)$ for all symbols X.
- If q is not accepting, and $\delta(q, X)$ is undefined, let $\delta(q, X)=(s, X, R)$.

Proof of 2: Halting -> Acceptance

Modify M to become $\mathrm{M}^{\prime \prime}$ as follows:

1. Introduce a new state f, the only accepting state of M".
2. f has no moves.
3. If $\delta(q, X)$ is undefined for any state q and symbol X, define it by $\delta(q, X)=(f, X, R)$.

Recursively Enumerable Languages

- We now see that the classes of languages defined by TM's using final state and halting are the same.
This class of languages is called the recursively enumerable languages.
- Why? The term actually predates the Turing machine and refers to another notion of computation of functions.

Recursive Languages

\checkmark An algorithm is a TM that is guaranteed to halt whether or not it accepts.

- If $L=L(M)$ for some TM M that is an algorithm, we say L is a recursive language.
- Why? Again, don't ask; it is a term with a history.

Example: Recursive Languages

\checkmark Every CFL is a recursive language.

- Use the CYK algorithm.

Every regular language is a CFL (think of its DFA as a PDA that ignores its stack); therefore every regular language is recursive.
Almost anything you can think of is recursive.

