Decidability

Turing Machines Coded as Binary Strings
Diagonalizing over Turing Machines

Problems as Languages Undecidable Problems

Binary-Strings from TM's

We shall restrict ourselves to TM's with input alphabet $\{0,1\}$.

Assign positive integers to the three classes of elements involved in moves:

1. States: q_{1} (start state), q_{2} (final state), q_{3}, \ldots
2. Symbols $X_{1}(0), X_{2}(1), X_{3}$ (blank), X_{4}, \ldots
3. Directions $D_{1}(L)$ and $D_{2}(R)$.

Binary Strings from TM's - (2)

\Rightarrow Suppose $\delta\left(q_{i}, X_{j}\right)=\left(q_{k}, X_{1}, D_{m}\right)$.
\rightarrow Represent this rule by string $0^{i} 10^{j} 10^{\mathrm{k}} 10^{\prime} 10^{\mathrm{m}}$.
\checkmark Key point: since integers i, j, ... are all
>0, there cannot be two consecutive 1's in these strings.

Binary Strings from TM's - (2)

\checkmark Represent a TM by concatenating the codes for each of its moves, separated by 11 as punctuation.

- That is: Code $_{1} 11$ Code $_{2} 11$ Code $_{3} 11$...

Enumerating TM's and Binary Strings

- Recall we can convert binary strings to integers by prepending a 1 and treating the resulting string as a base-2 integer.
- Thus, it makes sense to talk about "the i-th binary string" and about "the i-th Turing machine."
- Note: if i makes no sense as a TM, assume the i-th TM accepts nothing.

Table of Acceptance

String j

```
1 2 3 4 5 6...
```


Diagonalization Again

- Whenever we have a table like the one on the previous slide, we can diagonalize it.
- That is, construct a sequence D by complementing each bit along the major diagonal.
Formally, $\mathrm{D}=\mathrm{a}_{1} \mathrm{a}_{2} \ldots$, where $\mathrm{a}_{\mathrm{i}}=0$ if the (i, i) table entry is 1 , and vice-versa.

The Diagonalization Argument

\checkmark Could D be a row (representing the language accepted by a TM) of the table?

Suppose it were the j-th row.
But D disagrees with the j-th row at the j-th column.
Thus D is not a row.

Diagonalization - (2)

-Consider the diagonalization language $L_{d}=\{w \mid w$ is the i-th string, and the i-th TM does not accept w\}.
\checkmark We have shown that L_{d} is not a recursively enumerable language; i.e., it has no TM.

Problems

-Informally, a "problem" is a yes/no question about an infinite set of possible instances.
\checkmark Example: "Does graph G have a Hamilton cycle (cycle that touches each node exactly once)?

- Each undirected graph is an instance of the "Hamilton-cycle problem."

Problems - (2)

Formally, a problem is a language.

- Each string encodes some instance.
- The string is in the language if and only if the answer to this instance of the problem is "yes."

Example: A Problem About Turing Machines

Δ We can think of the language L_{d} as a problem.

- "Does this TM not accept its own code?"
- Aside: We could also think of it as a problem about binary strings.
- Do you see how to phrase it?

Decidable Problems

\checkmark A problem is decidable if there is an algorithm to answer it.

- Recall: An "algorithm," formally, is a TM that halts on all inputs, accepted or not.
- Put another way, "decidable problem" = "recursive language."
- Otherwise, the problem is undecidable.

Bullseye Picture

From the Abstract to the Real

\checkmark While the fact that L_{d} is undecidable is interesting intellectually, it doesn't impact the real world directly.

- We first shall develop some TM-related problems that are undecidable, but our goal is to use the theory to show some real problems are undecidable.

Examples: Undecidable Problems

- Can a particular line of code in a program ever be executed?
- Is a given context-free grammar ambiguous?
- Do two given CFG's generate the same language?

The Universal Language

- An example of a recursively enumerable, but not recursive language is the language L_{u} of a universal Turing machine.
-That is, the UTM takes as input the code for some TM M and some binary string w and accepts if and only if M accepts w.

Designing the UTM

\checkmark Inputs are of the form:

Code for M 111 w

- Note: A valid TM code never has 111, so we can split M from w.
- The UTM must accept its input if and only if M is a valid TM code and that TM accepts w.

The UTM - (2)

\checkmark The UTM will have several tapes.
Tape 1 holds the input M111w
Tape 2 holds the tape of M.

- Mark the current head position of M.

Tape 3 holds the state of M.

The UTM - (3)

- Step 1: The UTM checks that M is a valid code for a TM.
- E.g., all moves have five components, no two moves have the same state/symbol as first two components.
\checkmark If M is not valid, its language is empty, so the UTM immediately halts without accepting.

The UTM - (4)

-Step 2: The UTM examines M to see how many of its own tape squares it needs to represent one symbol of M.
Step 3: Initialize Tape 2 to represent the tape of M with input w, and initialize Tape 3 to hold the start state.

The UTM - (5)

- Step 4: Simulate M.
- Look for a move on Tape 1 that matches the state on Tape 3 and the tape symbol under the head on Tape 2.
- If found, change the symbol and move the head marker on Tape 2 and change the State on Tape 3.
- If M accepts, the UTM also accepts.

A Question

- Do we see anything like universal Turing machines in real life?

Proof That L_{u} is Recursively Enumerable, but not Recursive

\rightarrow We designed a TM for $L_{\text {}}$, so it is surely RE.
Suppose it were recursive; that is, we could design a UTM U that always halted.
Then we could also design an algorithm for L_{d}, as follows.

Proof - (2)

Given input w, we can decide if it is in L_{d} by the following steps.

1. Check that w is a valid TM code.

- If not, then its language is empty, so w is in L_{d}.

2. If valid, use the hypothetical algorithm to decide whether w111w is in L_{u}.
3. If so, then w is not in L_{d}; else it is.

Proof - (3)

But we already know there is no algorithm for L_{d}.
-Thus, our assumption that there was an algorithm for L_{u} is wrong.
$\left\langle L_{u}\right.$ is RE, but not recursive.

Bullseye Picture

