Challenge Problem Set 3

May 12, 2010

1 Problem 1. (5 points)

Let S be the start symbol. Variables A, B, and C generate strings of L that end in 0,1 , and 2 , respectively. The productions are:
$\mathrm{S}->\mathrm{A}|\mathrm{B}| \mathrm{C} \mid \epsilon$
$\mathrm{A} \rightarrow \mathrm{B} 0|\mathrm{C} 0| 0$
$\mathrm{B}->\mathrm{A} 1|\mathrm{C} 1| 1$
$\mathrm{C} \rightarrow \mathrm{A} 2|\mathrm{~B} 2| 2$

2 Problem 2. (5 points)

Consider the NFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$, which corresponds to the language $L(A)=L$. We can construct a CFG $G=\left(Q, \Sigma, P, Q_{q_{0}}\right)$ such that $L(G)=L$. For every NFA state q, there is a variable Q_{q}. If $\delta(q, a)$ contains state p, then there is a production $Q_{q} \rightarrow a Q_{p}$.

In this proof, we need to show by induction that if A accepts ω then G generates ω and vice versa.

If A accepts ω then G generates ω
Basis. If $|\omega|=0$, then $\omega=\epsilon$. If A accepts ϵ from q_{k}, then $q_{k} \in F$. Then, it follows that we have the production $Q_{q_{k}} \rightarrow \epsilon$, and thus $Q_{q_{k}} \Rightarrow^{*} \epsilon$.

Induction. Suppose $|\omega| \geq 1$, and that the inductive hypothesis holds for strings of length $<|\omega|$. Then we can write $\omega=a x$. Since $\omega \in L(A)$, $\hat{\delta}\left(q_{0}, a x\right) \in F$. This then implies that $\hat{\delta}\left(\delta\left(q_{0}, a\right), x\right) \in F$. From the induction, we have $\delta\left(q_{0}, a\right)=q_{i}$ and $\hat{\delta}\left(q_{i}, x\right) \in F$. There is a corresponding variable $Q_{q_{0}} \rightarrow a Q_{q_{i}}$ and a variable $Q_{q_{i}} \Rightarrow^{*} x$. Hence, $Q_{q_{0}} \Rightarrow^{*} a x=\omega$, which indicates G generates ω.

If G generates string ω then A accepts ω
Basis. $|\omega|=0$, then $\omega=\epsilon$. Since if $Q_{q_{k}} \rightarrow \epsilon$. From our construction above, $q_{k} \in F$. Then $\omega=\epsilon$ is accepted by A.

Induction. Suppose $|\omega| \geq 1$, and that the inductive hypothesis holds for strings of length $<|\omega|$. Then, we can write $\omega=a x$. We have $Q_{q_{k}} \Rightarrow$ $a Q_{q_{i}} \Rightarrow^{*} a x$, where $Q_{q_{i}}$ corresponds to $q_{i} \in \delta\left(q_{0}, a\right)$ such that $\hat{\delta}\left(q_{i}, x\right) \in F$. Since the inductive hypothesis holds for x, we have $\hat{\delta}\left(q_{i}, x\right) \in F . \hat{\delta}\left(q_{i}, x\right)=$ $\hat{\delta}\left(\delta\left(q_{0}, a\right), x\right)=\hat{\delta}\left(q_{0}, w\right) \in F$. Hence, A accepts ω starting from q_{0}.

3 Problem 3. (5 points)

Part a) Consider the string $a+a+a$, we have following two left-most derivations for the same:

- Derivation 1: $E \Rightarrow E+E \Rightarrow a+E \Rightarrow a+E+E \Rightarrow a+a+E \Rightarrow$ $a+a+a$
- Derivation 2: $E \Rightarrow E+E \Rightarrow E+E+E \Rightarrow a+E+E \Rightarrow a+a+E$ $\Rightarrow a+a+a$

Hence this grammar is ambiguous.
Part b) The following is an equivalent un-ambiguous grammar.

$$
\begin{aligned}
E & \rightarrow E+T \mid T \\
T & \rightarrow(E) \mid a
\end{aligned}
$$

Points were deducted for:

- Not showing(or providing some reasoning) why a particular string is ambiguous.
- The modified grammar is ambiguous.
- The modified grammar though not ambiguous is not equivalent to the original grammar.

