Challenge Problem Set 4

May 25, 2010

1 Problem 1. (5 points)

- C R is context-free. We can express C R as $C \cap \overline{R}$. As regular languages are closed under complement, \overline{R} is a regular language. Intersection of a regular language and a CFL is a CFL(refer to textbook) and hence C - R is context-free.
- R C is not necessarily context-free. We can express R C as $R \cap \overline{C}$. If $R \cap \overline{C}$ is context free for every R it implies that \overline{C} is context free(case $R = \sum^*$). We have a contradiction and hence R - C is not necessarily context-free.

2 Problem 2. (5 points)

Consider language $L = \{0^i 1^j 2^j 3^{3i} | i, j \ge 1\}$. L is context free as we can represented by the following grammar.

$$S \to 0S333|0T333$$
$$T \to 1T2|12$$

Suppose that n is the pumping lemma constant. Let $z = 0^{n}1^{n}2^{n}$. Note that $z \in half(L)$ as $0^{n}1^{n}2^{n}3^{3n} \in L$. It is straight forward(*discussed in weekly section*) to apply pumping lemma on $0^{n}1^{n}2^{n}$ and prove that there is no configuration to split z into uvwxy such that the pumping lemma holds. Hence half(L) is not a context free language.