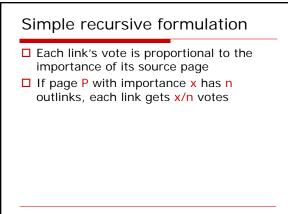
CS345 Data Mining

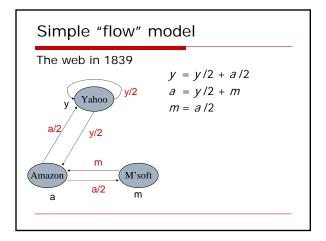
Link Analysis Algorithms Page Rank

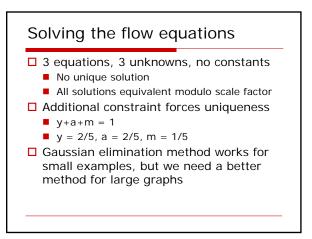
Anand Rajaraman, Jeffrey D. Ullman

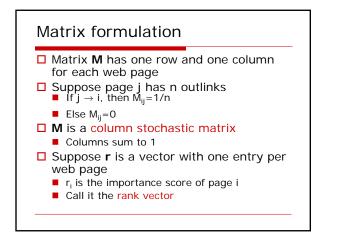
Link Analysis Algorithms

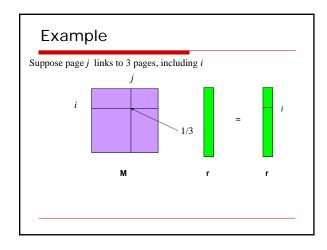
- Page Rank
- Hubs and Authorities
- Topic-Specific Page Rank
- Spam Detection Algorithms
- Other interesting topics we won't cover
 - Detecting duplicates and mirrors
 - Mining for communities
 - Classification
 - Spectral clustering

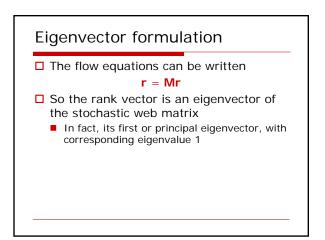


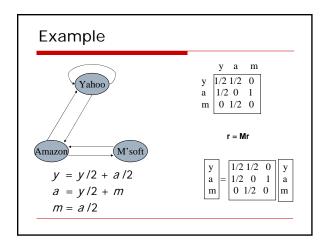


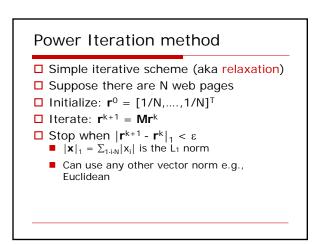


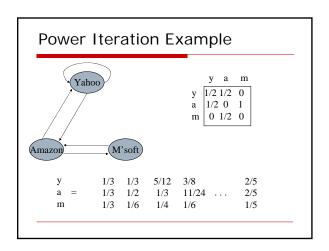












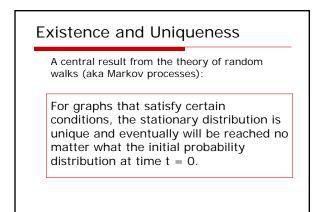
Random Walk Interpretation

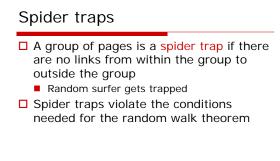
□ Imagine a random web surfer

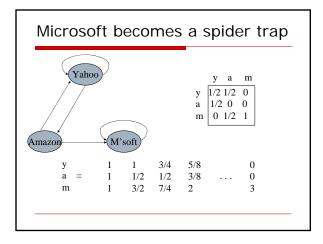
- At any time t, surfer is on some page P
- At time t+1, the surfer follows an outlink from P uniformly at random
- Ends up on some page Q linked from PProcess repeats indefinitely
- Let p(t) be a vector whose ith component is the probability that the surfer is at page i at time t
 - **p**(t) is a probability distribution on pages

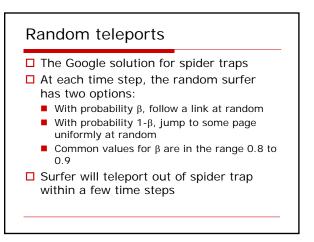
The stationary distribution

- Where is the surfer at time t+1?
 Follows a link uniformly at random
 - **p**(t+1) = **Mp**(t)
- Suppose the random walk reaches a state such that p(t+1) = Mp(t) = p(t)
 - Then p(t) is called a stationary distribution for the random walk
- \Box Our rank vector **r** satisfies **r** = **Mr**
 - So it is a stationary distribution for the random surfer



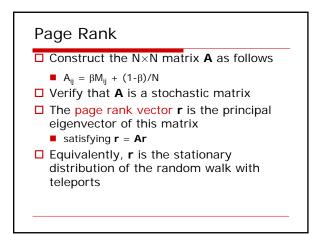


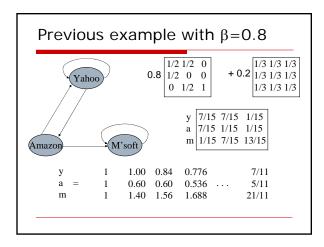


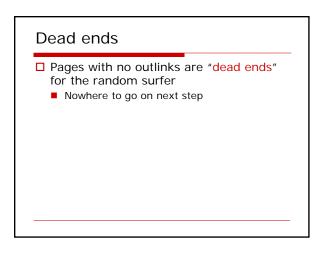


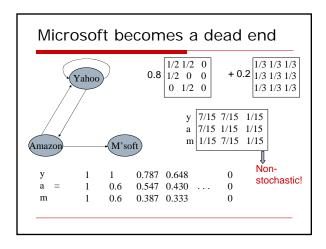
Matrix formulation

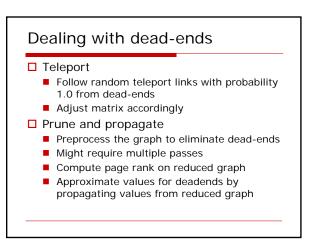
- □ Suppose there are N pages
 - Consider a page j, with set of outlinks O(j)
 We have M_{ij} = 1/|O(j)| when j→i and M_{ij} = 0 otherwise
 - The random teleport is equivalent to
 - adding a teleport link from j to every other page with probability (1-β)/N
 - reducing the probability of following each outlink from 1/|O(j)| to β/|O(j)|
 - Equivalent: tax each page a fraction (1-β) of its score and redistribute evenly







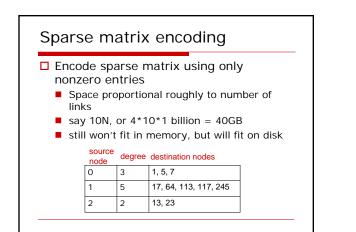


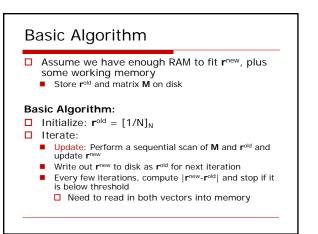


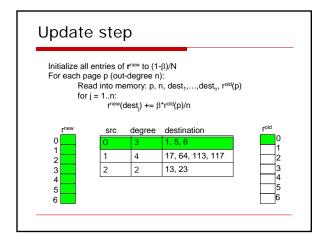
Computing page rank

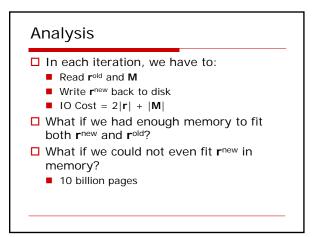
- Key step is matrix-vector multiply
 r^{new} = Ar^{old}
- Easy if we have enough main memory to hold A, r^{old}, r^{new}
- □ Say N = 1 billion pages
 - We need 4 bytes for each entry (say)
 - 2 billion entries for vectors, approx 8GB
 - Matrix A has N² entries
 - □ 10¹⁸ is a large number!

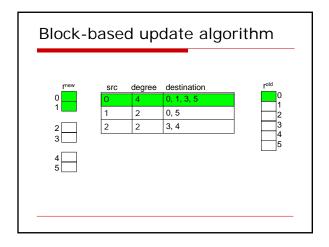
Sparse matrix formulation Although A is a dense matrix, it is obtained from a sparse matrix M 10 links per node, approx 10N entries We can restate the page rank equation $\mathbf{r} = \beta M \mathbf{r} + [(1-\beta)/N]_N$ $[(1-\beta)/N]_N$ is an N-vector with all entries $(1-\beta)/N$ So in each iteration, we need to: Compute $\mathbf{r}^{new} = \beta M \mathbf{r}^{old}$ Add a constant value $(1-\beta)/N$ to each entry in \mathbf{r}^{new}

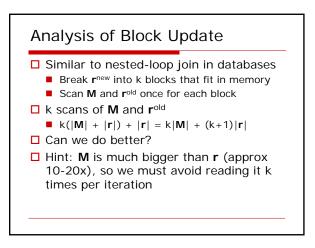


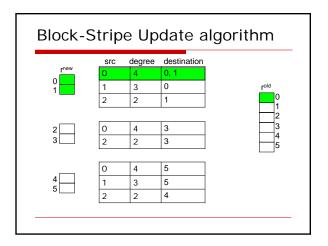


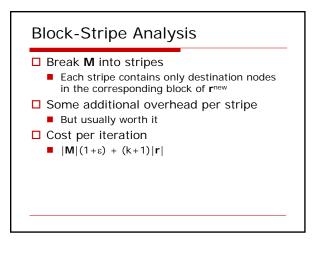












Next

- Topic-Specific Page Rank
- Hubs and Authorities
- Spam Detection