
1

CS345
Data Mining

Link Analysis Algorithms
Page Rank

Anand Rajaraman, Jeffrey D. Ullman

Link Analysis Algorithms

Page Rank
Hubs and Authorities
Topic-Specific Page Rank
Spam Detection Algorithms
Other interesting topics we won’t cover

Detecting duplicates and mirrors
Mining for communities
Classification
Spectral clustering

Ranking web pages

Web pages are not equally “important”
www.joe-schmoe.com v www.stanford.edu

Inlinks as votes
www.stanford.edu has 23,400 inlinks
www.joe-schmoe.com has 1 inlink

Are all inlinks equal?
Recursive question! 

Simple recursive formulation

Each link’s vote is proportional to the 
importance of its source page
If page P with importance x has n
outlinks, each link gets x/n votes

Simple “flow” model

The web in 1839

Yahoo

M’softAmazon

y

a m

y/2

y/2

a/2

a/2

m

y = y /2 + a /2
a = y /2 + m
m = a /2

Solving the flow equations

3 equations, 3 unknowns, no constants
No unique solution
All solutions equivalent modulo scale factor

Additional constraint forces uniqueness
y+a+m = 1
y = 2/5, a = 2/5, m = 1/5

Gaussian elimination method works for 
small examples, but we need a better 
method for large graphs



2

Matrix formulation

Matrix M has one row and one column 
for each web page
Suppose page j has n outlinks

If j → i, then Mij=1/n

Else Mij=0

M is a column stochastic matrix
Columns sum to 1

Suppose r is a vector with one entry per 
web page

ri is the importance score of page i
Call it the rank vector

Example

Suppose page j links to 3 pages, including i

i

j

M r r

=
i

1/3

Eigenvector formulation

The flow equations can be written 
r = Mr

So the rank vector is an eigenvector of 
the stochastic web matrix

In fact, its first or principal eigenvector, with 
corresponding eigenvalue 1

Example

Yahoo

M’softAmazon

y   1/2 1/2   0
a    1/2  0    1
m    0  1/2   0

y    a     m

y = y /2 + a /2
a = y /2 + m
m = a /2

r = Mr

y       1/2 1/2   0     y
a   =  1/2   0    1     a
m       0  1/2   0     m

Power Iteration method

Simple iterative scheme (aka relaxation)
Suppose there are N web pages
Initialize: r0 = [1/N,….,1/N]T

Iterate: rk+1 = Mrk

Stop when |rk+1 - rk|1 < ε
|x|1 = ∑1·i·N|xi| is the L1 norm 

Can use any other vector norm e.g., 
Euclidean

Power Iteration Example

Yahoo

M’softAmazon

y   1/2 1/2   0
a    1/2  0    1
m    0  1/2   0

y    a     m

y
a    =
m

1/3
1/3
1/3

1/3
1/2
1/6

5/12
1/3
1/4

3/8
11/24
1/6

2/5
2/5
1/5

. . .



3

Random Walk Interpretation

Imagine a random web surfer
At any time t, surfer is on some page P
At time t+1, the surfer follows an outlink
from P uniformly at random
Ends up on some page Q linked from P
Process repeats indefinitely

Let p(t) be a vector whose ith
component is the probability that the 
surfer is at page i at time t

p(t) is a probability distribution on pages

The stationary distribution

Where is the surfer at time t+1?
Follows a link uniformly at random
p(t+1) = Mp(t)

Suppose the random walk reaches a 
state such that p(t+1) = Mp(t) = p(t)

Then p(t) is called a stationary distribution
for the random walk

Our rank vector r satisfies r = Mr
So it is a stationary distribution for the 
random surfer

Existence and Uniqueness

A central result from the theory of random 
walks (aka Markov processes):

For graphs that satisfy certain 
conditions, the stationary distribution is 
unique and eventually will be reached no 
matter what the initial probability 
distribution at time t = 0.

Spider traps

A group of pages is a spider trap if there 
are no links from within the group to 
outside the group

Random surfer gets trapped

Spider traps violate the conditions 
needed for the random walk theorem

Microsoft becomes a spider trap

Yahoo

M’softAmazon

y   1/2 1/2   0
a    1/2  0    0
m    0  1/2   1

y    a     m

y
a    =
m

1
1
1

1
1/2
3/2

3/4
1/2
7/4

5/8
3/8
2

0
0
3

. . .

Random teleports

The Google solution for spider traps
At each time step, the random surfer 
has two options:

With probability β, follow a link at random
With probability 1-β, jump to some page 
uniformly at random
Common values for β are in the range 0.8 to 
0.9

Surfer will teleport out of spider trap 
within a few time steps



4

Matrix formulation

Suppose there are N pages
Consider a page j, with set of outlinks O(j)
We have Mij = 1/|O(j)| when j→i and Mij = 0 

otherwise
The random teleport is equivalent to

adding a teleport link from j to every other 
page with probability (1-β)/N
reducing the probability of following each 
outlink from 1/|O(j)| to β/|O(j)|
Equivalent: tax each page a fraction (1-β) 
of its score and redistribute evenly 

Page Rank
Construct the N×N matrix A as follows

Aij = βMij + (1-β)/N

Verify that A is a stochastic matrix
The page rank vector r is the principal 
eigenvector of this matrix

satisfying r = Ar

Equivalently, r is the stationary 
distribution of the random walk with 
teleports

Previous example with β=0.8

Yahoo

M’softAmazon

1/2 1/2   0
1/2   0    0
0   1/2   1

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

y   7/15  7/15 1/15
a   7/15  1/15   1/15
m  1/15  7/15  13/15

0.8 + 0.2

y
a    =
m

1
1
1

1.00
0.60
1.40

0.84
0.60
1.56

0.776
0.536
1.688

7/11
5/11

21/11
. . .

Dead ends

Pages with no outlinks are “dead ends”
for the random surfer

Nowhere to go on next step

Microsoft becomes a dead end

Yahoo

M’softAmazon

y
a    =
m

1
1
1

1
0.6
0.6

0.787
0.547
0.387

0.648
0.430
0.333

0
0
0

. . .

1/2 1/2   0
1/2   0    0
0   1/2   0

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

y   7/15  7/15 1/15
a   7/15  1/15   1/15
m  1/15  7/15   1/15

0.8 + 0.2

Non-
stochastic!

Dealing with dead-ends

Teleport
Follow random teleport links with probability 
1.0 from dead-ends
Adjust matrix accordingly

Prune and propagate
Preprocess the graph to eliminate dead-ends 
Might require multiple passes
Compute page rank on reduced graph
Approximate values for deadends by 
propagating values from reduced graph



5

Computing page rank

Key step is matrix-vector multiply
rnew = Arold

Easy if we have enough main memory to 
hold A, rold, rnew

Say N = 1 billion pages
We need 4 bytes for each entry (say)
2 billion entries for vectors, approx 8GB
Matrix A has N2 entries

1018 is a large number!

Sparse matrix formulation

Although A is a dense matrix, it is obtained 
from a sparse matrix M

10 links per node, approx 10N entries

We can restate the page rank equation 
r = βMr + [(1-β)/N]N

[(1-β)/N]N is an N-vector with all entries (1-β)/N

So in each iteration, we need to:
Compute rnew = βMrold

Add a constant value (1-β)/N to each entry in rnew

Sparse matrix encoding

Encode sparse matrix using only 
nonzero entries

Space proportional roughly to number of 
links
say 10N, or 4*10*1 billion = 40GB
still won’t fit in memory, but will fit on disk

13, 2322

17, 64, 113, 117, 24551

1, 5, 730

source
node degree destination nodes

Basic Algorithm 

Assume we have enough RAM to fit rnew, plus 
some working memory

Store rold and matrix M on disk

Basic Algorithm:
Initialize: rold = [1/N]N

Iterate:
Update: Perform a sequential scan of M and rold and 
update rnew

Write out rnew to disk as rold for next iteration
Every few iterations, compute |rnew-rold| and stop if it 
is below threshold

Need to read in both vectors into memory

Update step

13, 2322

17, 64, 113, 11741

1, 5, 630
src degree destination

0
1
2
3
4
5
6

0
1
2
3
4
5
6

rnew rold

Initialize all entries of rnew to (1-β)/N
For each page p (out-degree n):

Read into memory: p, n, dest1,…,destn, rold(p)
for j = 1..n:

rnew(destj) += β*rold(p)/n

Analysis

In each iteration, we have to:
Read rold and M
Write rnew back to disk
IO Cost = 2|r| + |M|

What if we had enough memory to fit 
both rnew and rold?
What if we could not even fit rnew in 
memory?

10 billion pages



6

Block-based update algorithm

3, 422

0, 521

0, 1, 3, 540
src degree destination

0
1

2
3

4
5

0
1
2
3
4
5

rnew rold

Analysis of Block Update

Similar to nested-loop join in databases
Break rnew into k blocks that fit in memory
Scan M and rold once for each block

k scans of M and rold

k(|M| + |r|) + |r| = k|M| + (k+1)|r|

Can we do better?
Hint: M is much bigger than r (approx 
10-20x), so we must avoid reading it k 
times per iteration

Block-Stripe Update algorithm

122

031

0, 140
src degree destination

0
1

2
3

4
5

0
1
2
3
4
5

rnew

rold

422

531

540

322

340

Block-Stripe Analysis

Break M into stripes
Each stripe contains only destination nodes 
in the corresponding block of rnew

Some additional overhead per stripe
But usually worth it

Cost per iteration
|M|(1+ε) + (k+1)|r|

Next

Topic-Specific Page Rank
Hubs and Authorities
Spam Detection


