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Applications
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Finding Similar Pairs

�Suppose we have in main memory data 
representing a large number of objects.

� May be the objects themselves (e.g., 
summaries of faces).

� May be signatures as in minhashing.

�We want to compare each to each, 
finding those pairs that are sufficiently 
similar.
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Candidate Generation From 
Minhash Signatures

�Pick a similarity threshold s, a fraction 
< 1.

�A pair of columns c and d is a 
candidate pair if their signatures agree 
in at least fraction s of the rows.

� I.e., M (i, c ) = M (i, d )  for at least 
fraction s values of i.
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Candidate Generation --- (2)

�For images, a pair of vectors is a 
candidate if they differ by at most a 
small threshold t in at least s % of the 
components.

�For entity records, a pair is a candidate 
if the sum of similarity scores of 
corresponding components exceeds a 
threshold.
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The Problem with Checking for 
Candidates

�While the signatures of all columns may 
fit in main memory, comparing the 
signatures of all pairs of columns is 
quadratic in the number of columns.

�Example: 106 columns implies 5*1011

comparisons.

�At 1 microsecond/comparison: 6 days.
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Solutions

1. Divide-Compute-Merge (DCM) uses 
external sorting, merging.

2. Locality-Sensitive Hashing (LSH) can 
be carried out in main memory, but 
admits some false negatives.

3. Hamming LSH --- a variant LSH 
method.
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Divide-Compute-Merge

�Designed for “shingles” and docs.

�At each stage, divide data into batches 
that fit in main memory.

�Operate on individual batches and write 
out partial results to disk.

�Merge partial results from disk.
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doc1: s11,s12,…,s1k

doc2: s21,s22,…,s2k
…

DCM Steps

s11,doc1
s12,doc1
…
s1k,doc1
s21,doc2

…

Invert
t1,doc11
t1,doc12
…
t2,doc21
t2,doc22

…

sort on

shingleId

doc11,doc12,1
doc11,doc13,1
…
doc21,doc22,1
…

Invert and pair

doc11,doc12,1
doc11,doc12,1
…
doc11,doc13,1
…

sort on

<docId1,
docId2>

doc11,doc12,2
doc11,doc13,10
…

Merge
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DCM Summary

1. Start with the pairs <shingleId, docId>.

2. Sort by shingleId.

3. In a sequential scan, generate triplets <docId1, 
docId2, 1> for pairs of docs that share a shingle.

4. Sort on <docId1, docId2>.

5. Merge triplets with common docIds to generate 
triplets of the form <docId1,docId2,count>.

6. Output document pairs with count > threshold.
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Some Optimizations

�“Invert and Pair” is the most expensive 
step.

�Speed it up by eliminating very 
common shingles.

� “the”, “404 not found”, “<A HREF”, etc.

�Also, eliminate exact-duplicate docs 
first.
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Locality-Sensitive Hashing

�Big idea: hash columns of signature 
matrix M several times.

�Arrange that (only) similar columns are 
likely to hash to the same bucket.

�Candidate pairs are those that hash at 
least once to the same bucket.
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Partition Into Bands

Matrix M

r rows
per band

b bands
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Partition into Bands  --- (2)

�Divide matrix M into b bands of r rows.

�For each band, hash its portion of each 
column to a hash table with k buckets.

�Candidate column pairs are those that hash 
to the same bucket for ≥ 1 band.

�Tune b and r to catch most similar pairs, 
but few nonsimilar pairs.
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Matrix M

r rows b bands

Buckets
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Simplifying Assumption

�There are enough buckets that columns 
are unlikely to hash to the same bucket 
unless they are identical in a particular 
band.

�Hereafter, we assume that “same 
bucket” means “identical.”
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Example

�Suppose 100,000 columns.

�Signatures of 100 integers.

�Therefore, signatures take 40Mb.

�But 5,000,000,000 pairs of signatures 
can take a while to compare.

�Choose 20 bands of 5 integers/band.
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Suppose C1, C2 are 80% Similar

�Probability C1, C2 identical in one 
particular band: (0.8)5 = 0.328.

�Probability C1, C2 are not similar in any 
of the 20 bands: (1-0.328)20 = .00035 .

� i.e., we miss about 1/3000th of the 80%-
similar column pairs.
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Suppose C1, C2 Only 40% Similar

�Probability C1, C2 identical in any one 
particular band: (0.4)5 = 0.01 .

�Probability C1, C2 identical in ≥ 1 of 20 
bands: ≤ 20 * 0.01 = 0.2 .

�But false positives much lower for 
similarities << 40%. 
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LSH Involves a Tradeoff

�Pick the number of minhashes, the 
number of bands, and the number of 
rows per band to balance false 
positives/negatives.

�Example: if we had fewer than 20 
bands, the number of false positives 
would go down, but the number of false 
negatives would go up.
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LSH --- Graphically

� Example Target: All pairs with Sim > t.

�Suppose we use only one hash function:

�Partition into bands gives us:
s 1.0

Sim
Prob.

1.0

t 1.0

Sim
Prob.

1.0

0.0

Ideal

Sim
0.0

Prob.

1.0

s 1.0

1 – (1 – sr)b

0.0

t

t

t ~ (1/b)1/r



21

LSH Summary

�Tune to get almost all pairs with similar 
signatures, but eliminate most pairs 
that do not have similar signatures.

�Check in main memory that candidate 
pairs really do have similar signatures.

�Optional: In another pass through data, 
check that the remaining candidate 
pairs really are similar columns .
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New Topic: Hamming LSH

�An alternative to minhash + LSH.

�Takes advantage of the fact that if 
columns are not sparse, random rows 
serve as a good signature.

�Trick: create data matrices of 
exponentially decreasing sizes, 
increasing densities.
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Amplification of 1’s

�Hamming LSH constructs a series of 
matrices, each with half as many rows, by 
OR-ing together pairs of rows.

�Candidate pairs from each matrix have 
(say) between 20% - 80% 1’s and are 
similar in selected 100 rows.
� 20%-80% OK for similarity thresholds ≥ 0.5.

• Otherwise, two “similar” columns with widely 
differing numbers of 1’s could fail to both be in 
range for at least one matrix.
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Example

0

0

1

1

0

0

1

0

0

1

0

1

1

1

1
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Using Hamming LSH

�Construct the sequence of matrices.

� If there are R rows, then log2R matrices.

� Total work = twice that of reading the 
original matrix.

�Use standard LSH on a random 
selection of rows to identify similar 
columns in each matrix, but restricted 
to columns of “medium” density.
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LSH for Other Applications

1. Face recognition from 1000 
measurements/face.

2. Entity resolution from name-address-
phone records.

� General principle: find many hash 
functions for elements; candidate 
pairs share a bucket for > 1 hash.
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Face-Recognition Hash Functions

1. Pick a set of r of the 1000 
measurements.

2. Each bucket corresponds to a range of 
values for each of the r measurements.

3. Hash a vector to the bucket such that 
each of its r components is in-range.

4. Optional: if near the edge of a range, 
also hash to an adjacent bucket.
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Example: r = 2

0-4

5-9

10-14

15-19

38-4431-3724-3017-2310-16

One bucket, for
(x,y) if 10<x<16

and 0<y<4

(27,9)
goes
here.

Maybe
put a
copy

here, too.
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Many-One Face Lookup

�As for boolean matrices, use many 
different hash functions.

� Each based on a different set of the 1000 
measurements.

�Each bucket of each hash function 
points to the images that hash to that 
bucket.
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Face Lookup --- (2)

�Given a new image (the probe ), hash 
it according to all the hash functions.

�Any member of any one of its buckets 
is a candidate.

�For each candidate, count the number 
of components in which the candidate 
and probe are close.

�Match if #components > threshold.
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Hashing the Probe

h1 h2 h3 h4 h5

probe

Look in all
these buckets
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Many-Many Problem

�Make each pair of images that are in 
the same bucket according to any hash 
function be a candidate pair.

�Score each candidate pair as for the 
many-one problem.



33

Entity Resolution

�You don’t have the convenient 
multidimensional view of data that you 
do for “face-recognition” or “similar-
columns.”

�We actually used an LSH-inspired 
simplification.
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Entity Resolution --- (2)

� Three hash functions:

1. One bucket for each name string.

2. One bucket for each address string.

3. One bucket for each phone string.

� A pair is a candidate iff they mapped 
to the same bucket for at least one of 
the three hashes.


