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Mining Data Streams

The Stream Model

Sliding Windows

Counting 1’s
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The Stream Model

�Data enters at a rapid rate from one or 
more input ports.

�The system cannot store the entire 
stream.

�How do you make critical calculations 
about the stream using a limited 
amount of (secondary) memory?
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Applications --- (1)

�In general, stream processing is 
important for applications where

� New data arrives frequently.

� Important queries tend to ask about the 
most recent data, or summaries of data.
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Applications --- (2)

�Mining query streams.

� Google wants to know what queries are 
more frequent today than yesterday.

�Mining click streams.

� Yahoo wants to know which of its pages 
are getting an unusual number of hits in 
the past hour.
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Applications --- (3)

�Sensors of all kinds need monitoring, 
especially when there are many sensors 
of the same type, feeding into a central 
controller, most of which are not 
sensing anything important at the 
moment.

�Telephone call records summarized into 
customer bills.
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Applications --- (4)

�Intelligence-gathering.

� Like “evil-doers visit hotels” at beginning of 
course, but much more data at a much 
faster rate.

• Who calls whom?

• Who accesses which Web pages?

• Who buys what where?
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Sliding Windows

�A useful model of stream processing is 
that queries are about a window of 
length N --- the N most recent elements 
received.

�Interesting case: N is so large it cannot 
be stored in memory, or even on disk.

� Or, there are so many streams that windows 
for all cannot be stored.
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Counting Bits --- (1)

�Problem: given a stream of 0’s and 1’s, 
be prepared to answer queries of the 
form “how many 1’s in the last k bits?” 
where k ≤ N.

�Obvious solution: store the most recent 
N bits.

�When new bit comes in, discard the N +1st

bit.
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Counting Bits --- (2)

�You can’t get an exact answer without 
storing the entire window.

�Real Problem: what if we cannot afford 
to store N bits?

� E.g., we are processing 1 billion streams 
and N = 1 billion, but we’re happy with an 
approximate answer.
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Something That Doesn’t 
(Quite) Work

�Summarize exponentially increasing 
regions of the stream, looking 
backward.

�Drop small regions if they begin at the 
same point as a larger region.
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Example
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We can construct the count of
the last N bits, except we’re
Not sure how many of the last
6 are included.

?
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What’s Good?

�Stores only O(log2N ) bits.

� O(log N ) counts of log2N bits each.

�Easy update as more bits enter.

�Error in count no greater than the 
number of 1’s in the “unknown” area.
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What’s Not So Good?

�As long as the 1’s are fairly evenly 
distributed, the error due to the 
unknown region is small --- no more 
than 50%.

�But it could be that all the 1’s are in the 
unknown area at the end.

�In that case, the error is unbounded.
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Fixup

�Instead of summarizing fixed-length 
blocks, summarize blocks with specific 
numbers of 1’s.

� Let the block “sizes” (number of 1’s) 
increase exponentially.

�When there are few 1’s in the window, 
block sizes stay small, so errors are 
small.



17

DGIM* Method

�Store O(log2N ) bits per stream.

�Gives approximate answer, never off by 
more than 50%.

� Error factor can be reduced to any fraction 
> 0, with more complicated algorithm and 
proportionally more stored bits.

*Datar, Gionis, Indyk, and Motwani
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Timestamps

�Each bit in the stream has a timestamp, 
starting 1, 2, …

�Record timestamps modulo N (the 
window size), so we can represent any 
relevant timestamp in O(log2N ) bits.
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Buckets

� A bucket in the DGIM method is a 
record consisting of:

1. The timestamp of its end [O(log N ) bits].

2. The number of 1’s between its beginning 
and end [O(log log N ) bits].

� Constraint on buckets: number of 1’s 
must be a power of 2.

� That explains the log log N in (2).
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Representing a Stream by Buckets

�Either one or two buckets with the 
same power-of-2 number of 1’s.

�Buckets do not overlap in timestamps.

�Buckets are sorted by size (# of 1’s).

� Earlier buckets are not smaller than later 
buckets.

�Buckets disappear when their end-time 
is > N time units in the past.
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Example

1001010110001011010101010101011010101010101110101010111010100010110010

N

1 of
size 2

2 of
size 4

2 of
size 8

At least 1 of
size 16.  Partially
beyond window.

2 of
size 1
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Updating Buckets --- (1)

�When a new bit comes in, drop the last 
(oldest) bucket if its end-time is prior to 
N time units before the current time.

�If the current bit is 0, no other changes 
are needed.
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Updating Buckets --- (2)

� If the current bit is 1:

1. Create a new bucket of size 1, for just this bit.

� End timestamp = current time.

2. If there are now three buckets of size 1, 
combine the oldest two into a bucket of size 2.

3. If there are now three buckets of size 2, 
combine the oldest two into a bucket of size 4.

4. And so on…
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Example

1001010110001011010101010101011010101010101110101010111010100010110010

0010101100010110101010101010110101010101011101010101110101000101100101

0010101100010110101010101010110101010101011101010101110101000101100101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101
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Querying

� To estimate the number of 1’s in the 
most recent N bits:

1. Sum the sizes of all buckets but the last.

2. Add in half the size of the last bucket.

� Remember, we don’t know how many 
1’s of the last bucket are still within 
the window.
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Error Bound

�Suppose the last bucket has size 2k.

�Then by assuming 2k -1 of its 1’s are still 
within the window, we make an error of 
at most 2k -1.

�Since there is at least one bucket of 
each of the sizes less than 2k, the true 
sum is no less than 2k -1.

�Thus, error at most 50%.



27

Extensions (For Thinking)

�Can we use the same trick to answer 
queries “How many 1’s in the last k ?” 
where k < N ?

�Can we handle the case where the 
stream is not bits, but integers, and we 
want the sum of the last k ?


