
1

Mining Data Streams

The Stream Model

Sliding Windows

Counting 1’s

2

The Stream Model

�Data enters at a rapid rate from one or
more input ports.

�The system cannot store the entire
stream.

�How do you make critical calculations
about the stream using a limited
amount of (secondary) memory?

3

Processor

Limited
Storage

. . . 1, 5, 2, 7, 0, 9, 3

. . . a, r, v, t, y, h, b

. . . 0, 0, 1, 0, 1, 1, 0
time

Streams Entering

Queries

Output

4

Applications --- (1)

�In general, stream processing is
important for applications where

� New data arrives frequently.

� Important queries tend to ask about the
most recent data, or summaries of data.

5

Applications --- (2)

�Mining query streams.

� Google wants to know what queries are
more frequent today than yesterday.

�Mining click streams.

� Yahoo wants to know which of its pages
are getting an unusual number of hits in
the past hour.

6

Applications --- (3)

�Sensors of all kinds need monitoring,
especially when there are many sensors
of the same type, feeding into a central
controller, most of which are not
sensing anything important at the
moment.

�Telephone call records summarized into
customer bills.

7

Applications --- (4)

�Intelligence-gathering.

� Like “evil-doers visit hotels” at beginning of
course, but much more data at a much
faster rate.

• Who calls whom?

• Who accesses which Web pages?

• Who buys what where?

8

Sliding Windows

�A useful model of stream processing is
that queries are about a window of
length N --- the N most recent elements
received.

�Interesting case: N is so large it cannot
be stored in memory, or even on disk.

� Or, there are so many streams that windows
for all cannot be stored.

9

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

Past Future

10

Counting Bits --- (1)

�Problem: given a stream of 0’s and 1’s,
be prepared to answer queries of the
form “how many 1’s in the last k bits?”
where k ≤ N.

�Obvious solution: store the most recent
N bits.

�When new bit comes in, discard the N +1st

bit.

11

Counting Bits --- (2)

�You can’t get an exact answer without
storing the entire window.

�Real Problem: what if we cannot afford
to store N bits?

� E.g., we are processing 1 billion streams
and N = 1 billion, but we’re happy with an
approximate answer.

12

Something That Doesn’t
(Quite) Work

�Summarize exponentially increasing
regions of the stream, looking
backward.

�Drop small regions if they begin at the
same point as a larger region.

13

Example

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0

01

12

23

4

10

N

We can construct the count of
the last N bits, except we’re
Not sure how many of the last
6 are included.

?

6

14

What’s Good?

�Stores only O(log2N) bits.

� O(log N) counts of log2N bits each.

�Easy update as more bits enter.

�Error in count no greater than the
number of 1’s in the “unknown” area.

15

What’s Not So Good?

�As long as the 1’s are fairly evenly
distributed, the error due to the
unknown region is small --- no more
than 50%.

�But it could be that all the 1’s are in the
unknown area at the end.

�In that case, the error is unbounded.

16

Fixup

�Instead of summarizing fixed-length
blocks, summarize blocks with specific
numbers of 1’s.

� Let the block “sizes” (number of 1’s)
increase exponentially.

�When there are few 1’s in the window,
block sizes stay small, so errors are
small.

17

DGIM* Method

�Store O(log2N) bits per stream.

�Gives approximate answer, never off by
more than 50%.

� Error factor can be reduced to any fraction
> 0, with more complicated algorithm and
proportionally more stored bits.

*Datar, Gionis, Indyk, and Motwani

18

Timestamps

�Each bit in the stream has a timestamp,
starting 1, 2, …

�Record timestamps modulo N (the
window size), so we can represent any
relevant timestamp in O(log2N) bits.

19

Buckets

� A bucket in the DGIM method is a
record consisting of:

1. The timestamp of its end [O(log N) bits].

2. The number of 1’s between its beginning
and end [O(log log N) bits].

� Constraint on buckets: number of 1’s
must be a power of 2.

� That explains the log log N in (2).

20

Representing a Stream by Buckets

�Either one or two buckets with the
same power-of-2 number of 1’s.

�Buckets do not overlap in timestamps.

�Buckets are sorted by size (# of 1’s).

� Earlier buckets are not smaller than later
buckets.

�Buckets disappear when their end-time
is > N time units in the past.

21

Example

1001010110001011010101010101011010101010101110101010111010100010110010

N

1 of
size 2

2 of
size 4

2 of
size 8

At least 1 of
size 16. Partially
beyond window.

2 of
size 1

22

Updating Buckets --- (1)

�When a new bit comes in, drop the last
(oldest) bucket if its end-time is prior to
N time units before the current time.

�If the current bit is 0, no other changes
are needed.

23

Updating Buckets --- (2)

� If the current bit is 1:

1. Create a new bucket of size 1, for just this bit.

� End timestamp = current time.

2. If there are now three buckets of size 1,
combine the oldest two into a bucket of size 2.

3. If there are now three buckets of size 2,
combine the oldest two into a bucket of size 4.

4. And so on…

24

Example

1001010110001011010101010101011010101010101110101010111010100010110010

0010101100010110101010101010110101010101011101010101110101000101100101

0010101100010110101010101010110101010101011101010101110101000101100101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

25

Querying

� To estimate the number of 1’s in the
most recent N bits:

1. Sum the sizes of all buckets but the last.

2. Add in half the size of the last bucket.

� Remember, we don’t know how many
1’s of the last bucket are still within
the window.

26

Error Bound

�Suppose the last bucket has size 2k.

�Then by assuming 2k -1 of its 1’s are still
within the window, we make an error of
at most 2k -1.

�Since there is at least one bucket of
each of the sizes less than 2k, the true
sum is no less than 2k -1.

�Thus, error at most 50%.

27

Extensions (For Thinking)

�Can we use the same trick to answer
queries “How many 1’s in the last k ?”
where k < N ?

�Can we handle the case where the
stream is not bits, but integers, and we
want the sum of the last k ?

