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Still More Stream-Mining

Frequent Itemsets

Elephants and Troops

Exponentially Decaying Windows
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Counting Items

�Problem: given a stream, which items 
appear more than s times in the 
window?

�Possible solution: think of the stream of 
baskets as one binary stream per item.

� 1 = item present; 0 = not present.

� Use DGIM to estimate counts of 1’s for all 
items.
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Extensions

� In principle, you could count frequent 
pairs or even larger sets the same way.

� One stream per itemset.

� Drawbacks:

1. Only approximate.

2. Number of itemsets is way too big.
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Approaches

1. “Elephants and troops”: a heuristic 
way to converge on unusually strongly 
connected itemsets.

2. Exponentially decaying windows: a 
heuristic for selecting likely frequent 
itemsets. 



5

Elephants and Troops

�When Sergey Brin wasn’t worrying 
about Google, he tried the following 
experiment.

�Goal: find unusually correlated sets of 
words.

� “High Correlation ” = frequency of 
occurrence of set >> product of frequency 
of members.
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Experimental Setup

�The data was an early Google crawl of 
the Stanford Web.

�Each night, the data would be 
streamed to a process that counted a 
preselected collection of itemsets.

� If {a, b, c} is selected, count {a, b, c}, {a}, 
{b}, and {c}.

� “Correlation” = n 2 * #abc/(#a * #b * #c).

• n = number of pages.
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After Each Night’s Processing . . .

1. Find the most correlated sets counted.

2. Construct a new collection of itemsets
to count the next night.

� All the most correlated sets (“winners ”).

� Pairs of a word in some winner and a 
random word.

� Winners combined in various ways.

� Some random pairs.
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After a Week . . .

�The pair {“elephants”, “troops”} came 
up as the big winner.

�Why?  It turns out that Stanford 
students were playing a Punic-War 
simulation game internationally, where 
moves were sent by Web pages.
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Mining Streams Vs. Mining DB’s 
(New Topic)

�Unlike mining databases, mining 
streams doesn’t have a fixed answer.

�We’re really mining in the “Stat” point 
of view, e.g., “Which itemsets are 
frequent in the underlying model that 
generates the stream?”
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Stationarity

� Two different assumptions make a big 
difference.

1. Is the model stationary ?
� I.e., are the same statistics used throughout 

all time to generate the stream?

2. Or does the frequency of generating 
given items or itemsets change over 
time?
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Some Options for Frequent 
Itemsets

� We could:

1. Run periodic experiments, like E&T.

� Like SON --- itemset is a candidate if it is found 
frequent on any “day.”

� Good for stationary statistics.

2. Frame the problem as finding all frequent 
itemsets in an “exponentially decaying 
window.”

� Good for nonstationary statistics.
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Exponentially Decaying Windows

�If stream is a1, a2,… and we are taking 
the sum of the stream, take the answer 
at time t to be: Σi = 1,2,…,t ai e 

-c (t-i ).

�c is a constant, presumably tiny, like 
10-6 or 10-9.
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Example: Counting Items

�If each ai is an “item” we can compute 
the characteristic function of each 
possible item x as an E.D.W.

�That is: Σi = 1,2,…,t δi e 
-c (t-i ), where δi = 1 

if ai = x, and 0 otherwise.

� Call this sum the “count ” of item x.
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Counting Items --- (2)

�Suppose we want to find those items of 
weight at least ½.

�Important property: sum over all 
weights is 1/(1 – e -c ) or very close to 
1/[1 – (1 – c)] = 1/c.

�Thus: at most 2/c items have weight 
at least ½.
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Extension to Larger Itemsets*

� Count (some) itemsets in an E.D.W.

� When a basket B comes in:

1. Multiply all counts by (1-c ); drop counts < ½.

2. If an item in B is uncounted, create new 
count.

3. Add 1 to count of any item in B and to any 
counted itemset contained in B.

4. Initiate new counts (next slide).

* Informal proposal of Art Owen
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Initiation of New Counts

�Start a count for an itemset S ⊆B if every 

proper subset of S had a count prior to 
arrival of basket B.

�Example: Start counting {i, j } iff both i
and j were counted prior to seeing B.

�Example: Start counting {i, j, k } iff {i, j }, 
{i, k }, and {j, k } were all counted prior to 
seeing B.
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How Many Counts?

�Counts for single items < (2/c ) times the 
average number of items in a basket.

�Counts for larger itemsets = ??.  But we 
are conservative about starting counts of 
large sets.

� If we counted every set we saw, one basket 
of 20 items would initiate 1M counts.


