

Compact Skeletons

- Assume tuples components are scattered over website
- We have a tagger that can tag all tuple components on website
- Assume no noise for now
- Reconstruct relation

Skeletons

- Labeled trees
- Transformation from data graphs to relations

Overlays

Programmer 100K CTO 150K

Overlays

Compact Skeletons

- A skeleton is compact if all overlays are consistent
- Perfect if each node and edge of data graph is covered by at least one overlay
- Given a data graph G, does G have a Perfect Compact Skeleton (PCS)?
- Not always
- But if it exists it is unique

PCS Algorithm

Work bottom-up:
Compute node signatures
Place nodes in equivalence classes based on signature
Construct skeleton from equivalence classes

PCS Algorithm

PCS Algorithm

Incomplete information

Incomplete information

\[

\]

Tuple subsumption

- Tuple t subsumes tuple u if t and u agree on every component of u that is not null

$$
\begin{array}{llll}
\\
\mathrm{t} \rightarrow \mathrm{t}_{1} & S_{1} & \perp & a_{1} \\
\mathrm{u} \rightarrow t_{1} & \perp & \perp & a_{1}
\end{array}
$$

Partial Compact Skeletons

- For data graphs with incomplete information, we allow partial overlays - Results in nulls in relation
- If we can use consistent partial overlays to cover every node and edge of the graph, we have a partially perfect compact skeleton (PPCS)

Noisy Data Graphs

- Real-life websites are noisy
- False positives e.g., MS = degree, state or Microsoft?
- Non-skeleton links e.g., featured products

Skeletons for Noisy Data Graphs

- Problem:

- Find skeleton K with optimal coverage, called the best-fit skeleton (BFS)
- NP-complete

Greedy Heuristic for BFS

Weighted Greedy Heuristic

- Simple Greedy heuristic uses parent counts
- "Memory-less"
- Weighted Greedy heuristic takes into account past selections to improve simple greedy selection
- Computes "benefit" of each decision at every stage

