CS345 Data Mining

Link Analysis Algorithms
 Page Rank

Anand Rajaraman, Jeffrey D. Ullman

Link Analysis Algorithms

\square Page Rank
\square Hubs and Authorities
\square Topic-Specific Page Rank
\square Spam Detection Algorithms
\square Other interesting topics we won't cover

- Detecting duplicates and mirrors
- Mining for communities
- Classification
- Spectral clustering

Ranking web pages

\square Web pages are not equally "important"
■ www.joe-schmoe.com V www.stanford.edu
\square Inlinks as votes
■ www.stanford.edu has 23,400 inlinks

- www.joe-schmoe.com has 1 inlink
\square Are all inlinks equal?
- Recursive question!

Simple recursive formulation

\square Each link's vote is proportional to the importance of its source page
\square If page P with importance \times has n outlinks, each link gets x / n votes
\square Page P's own importance is the sum of the votes on its inlinks

Simple "flow" model

The web in 1839

Solving the flow equations

$\square 3$ equations, 3 unknowns, no constants

- No unique solution
- All solutions equivalent modulo scale factor
\square Additional constraint forces uniqueness
- $y+a+m=1$
- $y=2 / 5, a=2 / 5, m=1 / 5$
\square Gaussian elimination method works for small examples, but we need a better method for large graphs

Matrix formulation

\square Matrix \mathbf{M} has one row and one column for each web page
\square Suppose page j has n outlinks

- If j ! i, then $M_{i j}=1 / n$
- Else $M_{i j}=0$
$\square \mathbf{M}$ is a column stochastic matrix
- Columns sum to 1
\square Suppose \mathbf{r} is a vector with one entry per web page
- r_{i} is the importance score of page i
- Call it the rank vector
- $|\mathbf{r}|=1$

Example

Suppose page j links to 3 pages, including i

Eigenvector formulation

\square The flow equations can be written

$$
\mathbf{r}=\mathbf{M r}
$$

\square So the rank vector is an eigenvector of the stochastic web matrix

- In fact, its first or principal eigenvector, with corresponding eigenvalue 1

Example

$$
y=y / 2+a / 2
$$

$$
a=y / 2+m
$$

$$
m=a / 2
$$

	y	a	m
	$1 / 2$	$1 / 2$	0
y	$1 / 2$	0	1
a			
m	0	$1 / 2$	0

$$
\mathbf{r}=\mathbf{M r}
$$

y
a
m
:---:
$1 / 2$
0
a
a
m

Power Iteration method

\square Simple iterative scheme (aka relaxation)
\square Suppose there are N web pages
\square Initialize: $\mathbf{r}^{0}=[1 / N, \ldots ., 1 / N]^{\top}$
\square Iterate: $\mathbf{r}^{\mathbf{k}+1}=\mathbf{M r}^{\mathbf{k}}$
\square Stop when $\left|\mathbf{r}^{k+1}-\mathbf{r}^{\mathrm{k}}\right|_{1}<\varepsilon$

- $|\mathbf{x}|_{1}=\sum_{1 \leq i \leq N}\left|x_{i}\right|$ is the L_{1} norm
- Can use any other vector norm e.g., Euclidean

Power Iteration Example

	y	a	m
y	$1 / 2$	$1 / 2$	0
a	$1 / 2$	0	1
m	0	$1 / 2$	0

y						
a						
m	$=$	$1 / 3$	$1 / 3$	$5 / 12$	$3 / 8$	
$1 / 3$	$1 / 2$	$1 / 3$	$11 / 24$	\ldots	$2 / 5$	
$1 / 3$	$1 / 6$	$1 / 4$	$1 / 6$		$1 / 5$	

Random Walk Interpretation

\square Imagine a random web surfer

- At any time t, surfer is on some page P
- At time $t+1$, the surfer follows an outlink from P uniformly at random
- Ends up on some page Q linked from P
- Process repeats indefinitely
\square Let $\mathbf{p}(\mathrm{t})$ be a vector whose $\mathrm{i}^{\text {th }}$ component is the probability that the surfer is at page i at time t
- $\mathbf{p}(\mathrm{t})$ is a probability distribution on pages

The stationary distribution

\square Where is the surfer at time $t+1$?

- Follows a link uniformly at random
- $\mathbf{p}(\mathrm{t}+1)=\mathbf{M p}(\mathrm{t})$
\square Suppose the random walk reaches a state such that $\mathbf{p}(\mathrm{t}+1)=\mathbf{M p}(\mathrm{t})=\mathbf{p}(\mathrm{t})$
- Then $\mathbf{p}(\mathrm{t})$ is called a stationary distribution for the random walk
\square Our rank vector \mathbf{r} satisfies $\mathbf{r}=\mathbf{M r}$
- So it is a stationary distribution for the random surfer

Existence and Uniqueness

A central result from the theory of random walks (aka Markov processes):

For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution at time $t=0$.

Spider traps

\square A group of pages is a spider trap if there are no links from within the group to outside the group

- Random surfer gets trapped
\square Spider traps violate the conditions needed for the random walk theorem

Microsoft becomes a spider trap

Random teleports

\square The Google solution for spider traps
\square At each time step, the random surfer has two options:

- With probability β, follow a link at random
- With probability $1-\beta$, jump to some page uniformly at random
- Common values for β are in the range 0.8 to 0.9
\square Surfer will teleport out of spider trap within a few time steps

Random teleports ($\beta=0.8$)

Random teleports ($\beta=0.8$)

Matrix formulation

\square Suppose there are N pages

- Consider a page j, with set of outlinks $O(j)$
- We have $M_{i j}=1 /|O(j)|$ when $j!i$ and $M_{i j}=0$ otherwise
- The random teleport is equivalent to
\square adding a teleport link from j to every other page with probability $(1-\beta) / \mathrm{N}$
\square reducing the probability of following each outlink from $1 /|\mathrm{O}(\mathrm{j})|$ to $\beta /|\mathrm{O}(\mathrm{j})|$
\square Equivalent: tax each page a fraction (1- β) of its score and redistribute evenly

Page Rank

\square Construct the N£N matrix A as follows

- $A_{i j}=\beta M_{i j}+(1-\beta) / N$
\square Verify that \mathbf{A} is a stochastic matrix
\square The page rank vector \mathbf{r} is the principal eigenvector of this matrix
- satisfying $\mathbf{r}=\mathbf{A r}$
\square Equivalently, \mathbf{r} is the stationary distribution of the random walk with teleports

Dead ends

\square Pages with no outlinks are "dead ends" for the random surfer

- Nowhere to go on next step

Microsoft becomes a dead end

Dealing with dead-ends

\square Teleport

- Follow random teleport links with probability 1.0 from dead-ends
- Adjust matrix accordingly
\square Prune and propagate
- Preprocess the graph to eliminate dead-ends
- Might require multiple passes
- Compute page rank on reduced graph

■ Approximate values for deadends by propagating values from reduced graph

Computing page rank

\square Key step is matrix-vector multiplication
$\square \mathbf{r}^{\text {new }}=\mathbf{A r}{ }^{\text {old }}$
\square Easy if we have enough main memory to hold $\mathbf{A}, \mathbf{r}^{\text {old }}, \mathbf{r}^{\text {new }}$
\square Say $N=1$ billion pages

- We need 4 bytes for each entry (say)
- 2 billion entries for vectors, approx 8GB
- Matrix A has N^{2} entries
$\square 10^{18}$ is a large number!

Rearranging the equation

$\mathbf{r}=\mathbf{A r}$, where
$\mathrm{A}_{\mathrm{ij}}=\beta \mathrm{M}_{\mathrm{ij}}+(1-\beta) / \mathrm{N}$
$r_{i}=\sum_{1 \leq j \leq N} A_{i j} r_{j}$
$r_{i}=\sum_{1 \leq j \leq N}\left[\beta M_{i j}+(1-\beta) / N\right] r_{j}$
$=\beta \sum_{1 \leq j \leq N} M_{i j} r_{j}+(1-\beta) / N \sum_{1 \leq j \leq N} r_{j}$
$=\beta \sum_{1 \leq j \leq N} M_{i j} r_{j}+(1-\beta) / N$, since $|\mathbf{r}|=1$
$\mathbf{r}=\beta \mathbf{M r}+[(1-\beta) / N]_{N}$
where $[\mathrm{x}]_{N}$ is an N -vector with all entries x

Sparse matrix formulation

\square We can rearrange the page rank equation:

- $\mathbf{r}=\beta \mathbf{M r}+[(1-\beta) / N]_{N}$
- $[(1-\beta) / N]_{N}$ is an N-vector with all entries (1- β)/N
$\square \mathbf{M}$ is a sparse matrix!
- 10 links per node, approx 10 N entries
\square So in each iteration, we need to:
- Compute $\mathbf{r}^{\text {new }}=\beta$ Mrold
- Add a constant value ($1-\beta$)/N to each entry in $\mathbf{r}^{\text {new }}$

Sparse matrix encoding

\square Encode sparse matrix using only nonzero entries
■ Space proportional roughly to number of links

- say 10 N , or $4 * 10 * 1$ billion $=40 \mathrm{~GB}$
- still won't fit in memory, but will fit on disk

source
node

0	3	$1,5,7$
0	5	$17,64,113,117,245$
1	2	13,23
2	3	

Basic Algorithm

\square Assume we have enough RAM to fit $\mathbf{r}^{\text {new }}$, plus some working memory

- Store $\mathbf{r}^{\text {rold }}$ and matrix M on disk

Basic Algorithm:

\square Initialize: $\mathbf{r}^{\text {old }}=[1 / N]_{N}$
\square Iterate:

- Update: Perform a sequential scan of \mathbf{M} and $\mathbf{r}^{\text {old }}$ to update $\mathbf{r}^{\text {new }}$
- Write out $\mathbf{r}^{\text {new }}$ to disk as $\mathbf{r}^{\text {old }}$ for next iteration
- Every few iterations, compute $\left|\mathbf{r}^{\text {new }}-r^{\text {old }}\right|$ and stop if it is below threshold
\square Need to read in both vectors into memory

Update step

Initialize all entries of $\mathbf{r}^{\text {new }}$ to $(1-\beta) / \mathrm{N}$
For each page p (out-degree n):
Read into memory: p, n, dest $_{1}, \ldots$, dest $_{n},{ }^{\text {rodd }}(p)$ for $\mathrm{j}=1$..n:

$$
\mathrm{r}^{\text {new }}\left(\mathrm{dest}_{\mathrm{j}}\right)+=\beta^{\star} \mathrm{r}^{\text {old }}(\mathrm{p}) / n
$$

src	degree	destination
0	3	$1,5,6$
1	4	$17,64,113,117$
2	2	13,23

Analysis

\square In each iteration, we have to:

- Read rold and M
- Write $\mathbf{r}^{\text {new }}$ back to disk

■ IO Cost $=2|\mathbf{r}|+|\mathbf{M}|$
\square What if we had enough memory to fit both $\mathbf{r}^{\text {new }}$ and $\mathbf{r}^{\text {old? }}$
\square What if we could not even fit $\mathbf{r}^{\text {new }}$ in memory?
■ 10 billion pages

Block-based update algorithm

Analysis of Block Update

\square Similar to nested-loop join in databases

- Break $\mathbf{r}^{\text {new }}$ into k blocks that fit in memory
- Scan M and rold once for each block
$\square \mathrm{k}$ scans of \mathbf{M} and $\mathbf{r}^{\text {old }}$
■ $\mathrm{k}(|\mathbf{M}|+|\mathbf{r}|)+|\mathbf{r}|=\mathrm{k}|\mathbf{M}|+(\mathrm{k}+1)|\mathbf{r}|$
\square Can we do better?
\square Hint: M is much bigger than \mathbf{r} (approx 10-20x), so we must avoid reading it k times per iteration

Block-Stripe Update algorithm

src	degree	destination
0	4	0,1
1	3	0
2	2	1

2
3
\square

0	4	3
2	2	3

0	4	5
1	3	5
2	2	4

Block-Stripe Analysis

\square Break M into stripes
■ Each stripe contains only destination nodes in the corresponding block of $\mathbf{r}^{\text {new }}$
\square Some additional overhead per stripe

- But usually worth it
\square Cost per iteration
- $|\mathbf{M}|(1+\varepsilon)+(k+1)|\mathbf{r}|$

Next

\square Topic-Specific Page Rank
\square Hubs and Authorities
\square Spam Detection

