
CS345
Data Mining

Mining the Web for
Structured Data

Our view of the web so far…
Web pages as atomic units
Great for some applications

e.g., Conventional web search

But not always the right model

Going beyond web pages
Question answering

What is the height of Mt Everest?
Who killed Abraham Lincoln?

Relation Extraction
Find all <company,CEO> pairs

Virtual Databases
Answer database-like queries over web data
E.g., Find all software engineering jobs in
Fortune 500 companies

Question Answering
E.g., Who killed Abraham Lincoln?
Naïve algorithm

Find all web pages containing the terms
“killed” and “Abraham Lincoln” in close
proximity
Extract k-grams from a small window
around the terms
Find the most commonly occuring k-
grams

Question Answering
Naïve algorithm works fairly well!
Some improvements

Use sentence structure e.g., restrict to
noun phrases only
Rewrite questions before matching

“What is the height of Mt Everest” becomes
“The height of Mt Everest is <blank>”

The number of pages analyzed is
more important than the
sophistication of the NLP

For simple questions

Reference: Dumais et al

Relation Extraction
Find pairs (title, author)

Where title is the name of a book
E.g., (Foundation, Isaac Asimov)

Find pairs (company, hq)
E.g., (Microsoft, Redmond)

Find pairs (abbreviation, expansion)
(ADA, American Dental Association)

Can also have tuples with >2
components

Relation Extraction
Assumptions:

No single source contains all the tuples
Each tuple appears on many web pages
Components of tuple appear “close”
together

Foundation, by Isaac Asimov
Isaac Asimov’s masterpiece, the
Foundation trilogy

There are repeated patterns in the way
tuples are represented on web pages

Naïve approach
Study a few websites and come up
with a set of patterns e.g., regular
expressions

letter = [A-Za-z.]
title = letter{5,40}
author = letter{10,30}
(title) by (author)

Problems with naïve approach
A pattern that works on one web
page might produce nonsense when
applied to another

So patterns need to be page-specific, or
at least site-specific

Impossible for a human to
exhaustively enumerate patterns for
every relevant website

Will result in low coverage

Better approach (Brin)
Exploit duality between patterns and
tuples

Find tuples that match a set of patterns
Find patterns that match a lot of tuples
DIPRE (Dual Iterative Pattern Relation
Extraction)

Patterns Tuples

Match

Generate

DIPRE Algorithm
1. R ← SampleTuples

e.g., a small set of <title,author> pairs
2. O ← FindOccurrences(R)

Occurrences of tuples on web pages
Keep some surrounding context

3. P ← GenPatterns(O)
Look for patterns in the way tuples occur
Make sure patterns are not too general!

4. R ← MatchingTuples(P)
5. Return or go back to Step 2

Occurrences
e.g., Titles and authors
Restrict to cases where author and title appear
in close proximity on web page

 Foundation by Isaac Asimov (1951)
url = http://www.scifi.org/bydecade/1950.html
order = [title,author] (or [author,title])

denote as 0 or 1
prefix = “ ” (limit to e.g., 10 characters)
middle = “ by ”
suffix = “(1951) ”
occurrence =

(’Foundation’,’Isaac Asimov’,url,order,prefix,middle,suffix)

Patterns
 Foundation by Isaac Asimov (1951)
<p> Nightfall by Isaac Asimov (1941)

order = [title,author] (say 0)
shared prefix =
shared middle = by
shared suffix = (19
pattern = (order,shared prefix, shared middle,
shared suffix)

URL Prefix
Patterns may be specific to a website

Or even parts of it

Add urlprefix component to pattern

http://www.scifi.org/bydecade/1950.html occurence:
 Foundation by Isaac Asimov (1951)

http://www.scifi.org/bydecade/1940.html occurence:
<p> Nightfall by Isaac Asimov (1941)

shared urlprefix = http://www.scifi.org/bydecade/19

pattern = (urlprefix,order,prefix,middle,suffix)

Generating Patterns
1. Group occurences by order and middle
2. Let O = set of occurences with the same

order and middle
pattern.order = O.order
pattern.middle = O.middle
pattern.urlprefix = longest common prefix of all
urls in O
pattern.prefix = longest common prefix of
occurrences in O
pattern.suffix = longest common suffix of
occurrences in O

Example
http://www.scifi.org/bydecade/1950.html occurence:
 Foundation by Isaac Asimov (1951)

http://www.scifi.org/bydecade/1940.html occurence:
<p> Nightfall by Isaac Asimov (1941)

order = [title,author]
middle = “ by ”
urlprefix = http://www.scifi.org/bydecade/19
prefix = “ ”
suffix = “ (19”

Example
http://www.scifi.org/bydecade/1950.html occurence:
Foundation, by Isaac Asimov, has been hailed…

http://www.scifi.org/bydecade/1940.html occurence:
Nightfall, by Isaac Asimov, tells the tale of…

order = [title,author]
middle = “, by ”
urlprefix = http://www.scifi.org/bydecade/19
prefix = “”
suffix = “, ”

Pattern Specificity
We want to avoid generating patterns
that are too general
One approach:

For pattern p, define specificity =
|urlprefix||middle||prefix||suffix|
Suppose n(p) = number of occurences
that match the pattern p
Discard patterns where n(p) < nmin

Discard patterns p where
specificity(p)n(p) < threshold

Pattern Generation Algorithm
1. Group occurences by order and middle
2. Let O = a set of occurences with the same

order and middle
3. p = GeneratePattern(O)
4. If p meets specificity requirements, add p

to set of patterns
5. Otherwise, try to split O into multiple

subgroups by extending the urlprefix by
one character

If all occurences in O are from the same URL,
we cannot extend the urlprefix, so we discard O

Extending the URL prefix
Suppose O contains occurences from urls of the form
http://www.scifi.org/bydecade/195?.html
http://www.scifi.org/bydecade/194?.html

urlprefix = http://www.scifi.org/bydecade/19

When we extend the urlprefix, we split O into two subsets:

urlprefix = http://www.scifi.org/bydecade/194
urlprefix = http://www.scifi.org/bydecade/195

Finding occurrences and matches

Finding occurrences
Use inverted index on web pages
Examine resulting pages to extract
occurrences

Finding matches
Use urlprefix to restrict set of pages to
examine
Scan each page using regex constructed
from pattern

Relation Drift
Small contaminations can easily lead
to huge divergences
Need to tightly control process
Snowball (Agichtein and Gravano)

Trust only tuples that match many
patterns
Trust only patterns with high “support”
and “confidence”

Pattern support
Similar to DIPRE
Eliminate patterns not supported by
at least nmin known good tuples

either seed tuples or tuples generated in
a prior iteration

Pattern Confidence
Suppose tuple t matches pattern p
What is the probability that tuple t is
valid?
Call this probability the confidence of
pattern p, denoted conf(p)

Assume independent of other patterns

How can we estimate conf(p)?

Categorizing pattern matches
Given pattern p, suppose we can
partition its matching tuples into groups
p.positive, p.negative, and p.unknown
Grouping methodology is application-
specific

Categorizing Matches
e.g., Organizations and Headquarters

A tuple that exactly matches a known pair
(org,hq) is positive
A tuple that matches the org of a known
tuple but a different hq is negative

Assume org is key for relation
A tuple that matches a hq that is not a
known city is negative

Assume we have a list of valid city names
All other occurrences are unknown

Categorizing Matches
Books and authors

One possibility…
A tuple that matches a known tuple is
positive
A tuple that matches the title of a known
tuple but has a different author is negative

Assume title is key for relation
All other tuples are unknown

Can come up with other schemes if we
have more information

e.g., list of possible legal people names

Example
Suppose we know the tuples

Foundation, Isaac Asimov
Startide Rising, David Brin

Suppose pattern p matches
Foundation, Isaac Asimov
Startide Rising, David Brin
Foundation, Doubleday
Rendezvous with Rama, Arthur C. Clarke

|p.positive| = 2, |p.negative| = 1,
|p.unknown| = 1

Pattern Confidence (1)
pos(p) = |p.positive|
neg(p) = |p.negative|
un(p) = |p.unknown|

conf(p) = pos(p)/(pos(p)+neg(p))

Pattern Confidence (2)
Another definition – penalize patterns
with many unknown matches

conf(p) = pos(p)/(pos(p)+neg(p)+un(p)α)

where 0 · α · 1

Tuple confidence
Suppose candidate tuple t matches
patterns p1 and p2

What is the probability that t is an
valid tuple?

Assume matches of different patterns
are independent events

Tuple confidence
Pr[t matches p1 and t is not valid] = 1-conf(p1)
Pr[t matches p2 and t is not valid] = 1-conf(p2)
Pr[t matches {p1,p2} and t is not valid] =
(1-conf(p1))(1-conf(p2))
Pr[t matches {p1,p2} and t is valid] =
1 - (1-conf(p1))(1-conf(p2))

If tuple t matches a set of patterns P
conf(t) = 1 - Πp2P(1-conf(p))

Snowball algorithm
1. Start with seed set R of tuples
2. Generate set P of patterns from R

Compute support and confidence for each
pattern in P
Discard patterns with low support or confidence

3. Generate new set T of tuples matching
patterns P

Compute confidence of each tuple in T

4. Add to R the tuples t2T with
conf(t)>threshold.

5. Go back to step 2

Some refinements
Give more weight to tuples found
earlier
Approximate pattern matches
Entity tagging

Approximate matches
If tuple t matches a set of patterns P

conf(t) = 1 - Πp2P(1-conf(p))

Suppose we allow tuples that don’t
exactly match patterns but only
approximately

conf(t) = 1 - Πp2P(1-conf(p)match(t,p))

