
CS 345
Data Mining

Online algorithms
Search advertising

Online algorithms

Classic model of algorithms
You get to see the entire input, then
compute some function of it
In this context, “offline algorithm”

Online algorithm
You get to see the input one piece at a
time, and need to make irrevocable
decisions along the way

Similar to data stream models

Example: Bipartite matching

1

2

3

4

a

b

c

dGirls Boys

Example: Bipartite matching

1

2

3

4

a

b

c

d

M = {(1,a),(2,b),(3,d)} is a matching
Cardinality of matching = |M| = 3

Girls Boys

Example: Bipartite matching

1

2

3

4

a

b

c

dGirls Boys

M = {(1,c),(2,b),(3,d),(4,a)} is a
perfect matching

Matching Algorithm

Problem: Find a maximum-cardinality
matching for a given bipartite graph

A perfect one if it exists

There is a polynomial-time offline
algorithm (Hopcroft and Karp 1973)
But what if we don’t have the entire
graph upfront?

Online problem

Initially, we are given the set Boys
In each round, one girl’s choices are
revealed
At that time, we have to decide to
either:

Pair the girl with a boy
Don’t pair the girl with any boy

Example of application: assigning
tasks to servers

Online problem

1

2

3

4

a

b

c

d

(1,a)
(2,b)

(3,d)

Greedy algorithm

Pair the new girl with any eligible boy
If there is none, don’t pair girl

How good is the algorithm?

Competitive Ratio

For input I, suppose greedy produces
matching Mgreedy while an optimal
matching is Mopt

Competitive ratio =
minall possible inputs I (|Mgreedy|/|Mopt|)

Analyzing the greedy algorithm

Consider the set G of girls matched in Mopt but
not in Mgreedy

Then it must be the case that every boy
adjacent to girls in G is already matched in
Mgreedy

There must be at least |G| such boys
Otherwise the optimal algorithm could not have
matched all the G girls

Therefore
|Mgreedy| ¸ |G| = |Mopt - Mgreedy|
|Mgreedy|/|Mopt| ¸ 1/2

Worst-case scenario

1

2

3

4

a

b

c

(1,a)
(2,b)

d

History of web advertising

Banner ads (1995-2001)
Initial form of web advertising
Popular websites charged X$ for every
1000 “impressions” of ad

Called “CPM” rate
Modeled similar to TV, magazine ads

Untargeted to demographically tageted
Low clickthrough rates

low ROI for advertisers

Performance-based advertising

Introduced by Overture around 2000
Advertisers “bid” on search keywords
When someone searches for that
keyword, the highest bidder’s ad is
shown
Advertiser is charged only if the ad is
clicked on

Similar model later adopted by
Google with some changes

Called “Adwords”

Ads vs. search results

Web 2.0

Performance-based advertising
works!

Multi-billion-dollar industry

Interesting problems
What ads to show for a search?
If I’m an advertiser, which search terms
should I bid on and how much to bid?

Adwords problem

A stream of queries arrives at the
search engine

q1, q2,…
Several advertisers bid on each query
When query qi arrives, search engine
must pick a subset of advertisers
whose ads are shown
Goal: maximize search engine’s
revenues
Clearly we need an online algorithm!

Greedy algorithm

Simplest algorithm is greedy
It’s easy to see that the greedy
algorithm is actually optimal!

Complications (1)

Each ad has a different likelihood of
being clicked

Advertiser 1 bids $2, click probability =
0.1
Advertiser 2 bids $1, click probability =
0.5
Clickthrough rate measured historically

Simple solution
Instead of raw bids, use the “expected
revenue per click”

Complications (2)

Each advertiser has a limited budget
Search engine guarantees that the
advertiser will not be charged more than
their daily budget

Simplified model (for now)

Assume all bids are 0 or 1
Each advertiser has the same budget B
One advertiser per query
Let’s try the greedy algorithm

Arbitrarily pick an eligible advertiser for
each keyword

Bad scenario for greedy

Two advertisers A and B
A bids on query x, B bids on x and y
Both have budgets of $4
Query stream: xxxxyyyy

Worst case greedy choice: BBBB____
Optimal: AAAABBBB
Competitive ratio = ½

Simple analysis shows this is the worst
case

BALANCE algorithm [MSVV]

[Mehta, Saberi, Vazirani, and Vazirani]
For each query, pick the advertiser with
the largest unspent budget

Break ties arbitrarily

Example: BALANCE

Two advertisers A and B
A bids on query x, B bids on x and y
Both have budgets of $4
Query stream: xxxxyyyy
BALANCE choice: ABABBB__

Optimal: AAAABBBB

Competitive ratio = ¾

Analyzing BALANCE (1)
Consider simple case: two advertisers, P
and Q, each with budget B (assume
B À 1)
Assume optimal solution exhausts both
advertisers’ budgets

OPT = 2B
BALANCE must exhaust at least one
advertiser’s budget

If not, we can allocate more queries
Assume BALANCE exhausts Q’s budget, but
aloocates x queries fewer than the optimal
BAL = 2B - x

Analyzing Balance

A1 A2

B

xy

B

A1 A2

x Opt revenue = 2B
Balance revenue = 2B-x = B+y

We have y ¸ x
Balance revenue is minimum for x=y=B/2
Minimum Balance revenue = 3B/2
Competitive Ratio = 3/4

Queries allocated to A1 in optimal solution

Queries allocated to A2 in optimal solution

Analyzing BALANCE (2)

Three types of queries:
(A) P is the only bidder
(B) Q is the only bidder
(C) P and Q both bid

Since Q’s budget is exhausted but P’s
is not, and we couldn’t allocate x
queries, they must be of type C

Analyzing BALANCE (3)

BALANCE allocates at least x Type C
queries to Q

In the Optimal, these were assigned to P

Consider the last Type C query
assigned to Q

At this point, Q’s leftover budget was
greater than P’s
So P’s allocation was at least x

So we have BAL ≥ B + x

Analyzing BALANCE (4)

We now have:
BAL = 2B – x
BAL ≥ B + x

The minimum value of BAL is obtained
when x = B/2

BAL = 3B/2
OPT = 2B
So BAL/OPT = 3/4

General Result

In the general case, worst
competitive ratio of BALANCE is
1–1/e = approx. 0.63
Interestingly, no online algorithm has
a better competitive ratio
Won’t go through the details here,
but let’s see the worst case that gives
this ratio

Worst case for BALANCE

N advertisers, each with budget B À N À 1
NB queries appear in N rounds of B queries each
Round 1 queries: bidders A1, A2, …, AN

Round 2 queries: bidders A2, A3, …, AN

Round i queries: bidders Ai, …, AN

Optimum allocation: allocate round i queries to
Ai

Optimum revenue NB

BALANCE allocation

…

A1 A2 A3 AN-1 AN

B/N
B/(N-1)
B/(N-2)

After k rounds, sum of allocations to each of bins Ak,…,AN is
Sk = Sk+1 = … = SN = ∑1≤i≤ kB/(N-i+1)

If we find the smallest k such that Sk ¸ B, then after k rounds
we cannot allocate any queries to any advertiser

BALANCE analysis

B/1 B/2 B/3 … B/(N-k+1) … B/(N-1) B/N

S1

S2

Sk = B

1/1 1/2 1/3 … 1/(N-k+1) … 1/(N-1) 1/N

S1

S2

Sk = 1

BALANCE analysis

Fact: Hn = ∑1· i· n1/i = approx. log(n)
for large n

Result due to Euler

1/1 1/2 1/3 … 1/(N-k+1) … 1/(N-1) 1/N

Sk = 1

log(N)

log(N)-1

Sk = 1 implies HN-k = log(N)-1 = log(N/e)
N-k = N/e
k = N(1-1/e)

BALANCE analysis

So after the first N(1-1/e) rounds, we
cannot allocate a query to any
advertiser
Revenue = BN(1-1/e)
Competitive ratio = 1-1/e

General version of problem

Arbitrary bids, budgets
Consider query q, advertiser i

Bid = xi

Budget = bi

BALANCE can be terrible
Consider two advertisers A1 and A2

A1: x1 = 1, b1 = 110
A2: x2 = 10, b2 = 100

Generalized BALANCE

Arbitrary bids; consider query q,
bidder i

Bid = xi
Budget = bi
Amount spent so far = mi
Fraction of budget left over fi = 1-mi/bi
Define ψi(q) = xi(1-e-fi)

Allocate query q to bidder i with
largest value of ψi(q)
Same competitive ratio (1-1/e)

