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More Stream-Mining

Counting Distinct Elements

Computing “Moments”

Frequent Itemsets

Elephants and Troops

Exponentially Decaying Windows
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Counting Distinct Elements

�Problem: a data stream consists of 
elements chosen from a set of size n.  
Maintain a count of the number of 
distinct elements seen so far.

�Obvious approach: maintain the set of 
elements seen.
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Applications

�How many different words are found 
among the Web pages being crawled at 
a site?

� Unusually low or high numbers could 
indicate artificial pages (spam?).

�How many different Web pages does 
each customer request in a week?
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Using Small Storage

�Real Problem: what if we do not have 
space to store the complete set?

�Estimate the count in an unbiased way.

�Accept that the count may be in error, 
but limit the probability that the error is 
large.
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Flajolet-Martin* Approach

�Pick a hash function h that maps each of 
the n elements to at least log2n bits.

�For each stream element a, let r (a ) be 
the number of trailing 0’s in h (a ).

�Record R = the maximum r (a ) seen.

�Estimate = 2R.

* Really based on a variant due to AMS (Alon, Matias, and Szegedy) 
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Why It Works

�The probability that a given h (a ) ends in 
at least r  0’s is 2-r.

�If there are m different elements, the 
probability that R ≥ r is 1 – (1 - 2-r )m.

Prob. a given h(a)
ends in fewer than
r 0’s.

Prob. all h(a)’s
end in fewer than
r 0’s.



7

Why It Works – (2)

�Since 2-r is small, 1 - (1-2-r)m ≈ 1 - e -m2   .

�If 2r >> m, 1 - (1 - 2-r )m ≈ 1 - (1 - m2-r)

≈ m /2r ≈ 0.

�If 2r << m, 1 - (1 - 2-r )m ≈ 1 - e -m2   ≈ 1.

�Thus, 2R will almost always be around m.

-r

-r

First 2 terms of the
Taylor expansion of e x
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Why It Doesn’t Work

�E(2R ) is actually infinite.

� Probability halves when R -> R +1, but 
value doubles. 

�Workaround involves using many hash 
functions and getting many samples.

�How are samples combined?

� Average? What if one very large value?

�Median? All values are a power of 2.
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Solution

�Partition your samples into small 
groups.

�Take the average of groups.

�Then take the median of the averages.
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Generalization: Moments

�Suppose a stream has elements chosen 
from a set of n values.

�Let mi be the number of times value i
occurs.

�The k th moment is the sum of (mi )
k

over all i.
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Special Cases

�0th moment = number of different 
elements in the stream.

� The problem just considered.

�1st moment = sum of the numbers of 
elements = length of the stream.

� Easy to compute.

�2nd moment = surprise number = a 
measure of how uneven the distribution is.
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Example: Surprise Number

�Stream of length 100; 11 values 
appear.

�Unsurprising: 10, 9, 9, 9, 9, 9, 9, 9, 9, 
9, 9.  Surprise # = 910.

�Surprising: 90, 1, 1, 1, 1, 1, 1, 1 ,1, 1, 
1.  Surprise # = 8,110.
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AMS Method

�Works for all moments; gives an 
unbiased estimate.

�We’ll just concentrate on 2nd moment.

�Based on calculation of many random 
variables X.

� Each requires a count in main memory, so 
number is limited.
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One Random Variable

�Assume stream has length n.

�Pick a random time to start, so that any 
time is equally likely.

�Let the chosen time have element a in 
the stream.

�X = n * ((twice the number of a ’s in the 
stream starting at the chosen time) – 1).

� Note: store n once, count of a ’s for each X.
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Expected Value of X

�2nd moment is Σa (ma )
2.

�E(X ) = (1/n )(Σall times t n * (twice the 
number of times the stream element at 

time t appears from that time on) – 1).
�= Σa (1/n)(n )(1+3+5+…+2ma-1) .

�= Σa (ma )
2.

Time when
the last a
is seen

Time when
the penultimate
a is seen

Time when
the first a
is seenGroup times

by the value
seen
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Combining Samples

�Compute as many variables X as can fit 
in available memory.

�Average them in groups.

�Take median of averages.

�Proper balance of group sizes and number 
of groups assures not only correct 
expected value, but expected error goes 
to 0 as number of samples gets large.



17

Problem: Streams Never End

�We assumed there was a number n, 
the number of positions in the stream.

�But real streams go on forever, so n is 
a variable – the number of inputs seen 
so far.
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Fixups

1. The variables X have n as a factor –
keep n separately; just hold the count 
in X.

2. Suppose we can only store k counts.  
We must throw some X ’s out as time 
goes on.

� Objective: each starting time t is 
selected with probability k /n.
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Solution to (2)

�Choose the first k times for k
variables.

�When the n th element arrives (n > k ), 
choose it with probability k / n.

�If you choose it, throw one of the 
previously stored variables out, with 
equal probability.
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New Topic: Counting Items

�Problem: given a stream, which items 
appear more than s times in the 
window?

�Possible solution: think of the stream of 
baskets as one binary stream per item.

� 1 = item present; 0 = not present.

� Use DGIM to estimate counts of 1’s for all 
items.
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Extensions

� In principle, you could count frequent 
pairs or even larger sets the same way.

� One stream per itemset.

� Drawbacks:

1. Only approximate.

2. Number of itemsets is way too big.
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Approaches

1. “Elephants and troops”: a heuristic 
way to converge on unusually strongly 
connected itemsets.

2. Exponentially decaying windows: a 
heuristic for selecting likely frequent 
itemsets. 
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Elephants and Troops

�When Sergey Brin wasn’t worrying 
about Google, he tried the following 
experiment.

�Goal: find unusually correlated sets of 
words.

� “High Correlation ” = frequency of 
occurrence of set >> product of frequency 
of members.
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Experimental Setup

�The data was an early Google crawl of 
the Stanford Web.

�Each night, the data would be 
streamed to a process that counted a 
preselected collection of itemsets.

� If {a, b, c} is selected, count {a, b, c}, {a}, 
{b}, and {c}.

� “Correlation” = n 2 * #abc/(#a * #b * #c).
• n = number of pages.
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After Each Night’s Processing . . .

1. Find the most correlated sets counted.

2. Construct a new collection of itemsets
to count the next night.

� All the most correlated sets (“winners ”).

� Pairs of a word in some winner and a 
random word.

� Winners combined in various ways.

� Some random pairs.
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After a Week . . .

�The pair {“elephants”, “troops”} came 
up as the big winner.

�Why?  It turns out that Stanford 
students were playing a Punic-War 
simulation game internationally, where 
moves were sent by Web pages.
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New Topic: Mining Streams 
Versus Mining DB’s

�Unlike mining databases, mining 
streams doesn’t have a fixed answer.

�We’re really mining in the “Stat” point 
of view, e.g., “Which itemsets are 
frequent in the underlying model that 
generates the stream?”
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Stationarity

Our assumptions make a big difference:

1. Is the model stationary ?

� I.e., are the same statistics used 
throughout all time to generate the stream?

2. Or does the frequency of generating 
given items or itemsets change over 
time?
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Some Options for Frequent 
Itemsets

1. Run periodic experiments, like E&T.

� Like SON – itemset is a candidate if it is 
found frequent on any “day.”

� Good for stationary statistics.

2. Frame the problem as finding all 
frequent itemsets in an “exponentially 
decaying window.”

� Good for nonstationary statistics.
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Exponentially Decaying Windows

�If stream is a1, a2,… and we are taking 
the sum of the stream, take the answer 
at time t to be: Σi = 1,2,…,t ai e 

-c (t-i ).

�c is a constant, presumably tiny, like 
10-6 or 10-9.
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Example: Counting Items

�If each ai is an “item” we can compute 
the characteristic function of each 
possible item x as an E.D.W.

�That is: Σi = 1,2,…,t δi e 
-c (t-i ), where δi = 1 

if ai = x, and 0 otherwise.

� Call this sum the “count ” of item x.
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Sliding Versus Decaying Windows

1/c

. . .
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Counting Items – (2)

�Suppose we want to find those items of 
weight at least ½.

�Important property: sum over all 
weights is 1/(1 – e -c ) or very close to 
1/[1 – (1 – c)] = 1/c.

�Thus: at most 2/c items have weight 
at least ½.
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Extension to Larger Itemsets*

� Count (some) itemsets in an E.D.W.

� When a basket B comes in:

1. Multiply all counts by (1-c ); 

2. For uncounted items in B, create new count.

3. Add 1 to count of any item in B and to any 
counted itemset contained in B.

4. Drop counts < ½.

5. Initiate new counts (next slide).

* Informal proposal of Art Owen
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Initiation of New Counts

�Start a count for an itemset S ⊆B if every 

proper subset of S had a count prior to 
arrival of basket B.

�Example: Start counting {i, j } iff both i
and j were counted prior to seeing B.

�Example: Start counting {i, j, k } iff {i, j }, 
{i, k }, and {j, k } were all counted prior to 
seeing B.
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How Many Counts?

�Counts for single items < (2/c ) times the 
average number of items in a basket.

�Counts for larger itemsets = ??.  But we 
are conservative about starting counts of 
large sets.

� If we counted every set we saw, one basket 
of 20 items would initiate 1M counts.


