
1

More Stream-Mining

Counting Distinct Elements

Computing “Moments”

Frequent Itemsets

Elephants and Troops

Exponentially Decaying Windows

2

Counting Distinct Elements

�Problem: a data stream consists of
elements chosen from a set of size n.
Maintain a count of the number of
distinct elements seen so far.

�Obvious approach: maintain the set of
elements seen.

3

Applications

�How many different words are found
among the Web pages being crawled at
a site?

� Unusually low or high numbers could
indicate artificial pages (spam?).

�How many different Web pages does
each customer request in a week?

4

Using Small Storage

�Real Problem: what if we do not have
space to store the complete set?

�Estimate the count in an unbiased way.

�Accept that the count may be in error,
but limit the probability that the error is
large.

5

Flajolet-Martin* Approach

�Pick a hash function h that maps each of
the n elements to at least log2n bits.

�For each stream element a, let r (a) be
the number of trailing 0’s in h (a).

�Record R = the maximum r (a) seen.

�Estimate = 2R.

* Really based on a variant due to AMS (Alon, Matias, and Szegedy)

6

Why It Works

�The probability that a given h (a) ends in
at least r 0’s is 2-r.

�If there are m different elements, the
probability that R ≥ r is 1 – (1 - 2-r)m.

Prob. a given h(a)
ends in fewer than
r 0’s.

Prob. all h(a)’s
end in fewer than
r 0’s.

7

Why It Works – (2)

�Since 2-r is small, 1 - (1-2-r)m ≈ 1 - e -m2 .

�If 2r >> m, 1 - (1 - 2-r)m ≈ 1 - (1 - m2-r)

≈ m /2r ≈ 0.

�If 2r << m, 1 - (1 - 2-r)m ≈ 1 - e -m2 ≈ 1.

�Thus, 2R will almost always be around m.

-r

-r

First 2 terms of the
Taylor expansion of e x

8

Why It Doesn’t Work

�E(2R) is actually infinite.

� Probability halves when R -> R +1, but
value doubles.

�Workaround involves using many hash
functions and getting many samples.

�How are samples combined?

� Average? What if one very large value?

�Median? All values are a power of 2.

9

Solution

�Partition your samples into small
groups.

�Take the average of groups.

�Then take the median of the averages.

10

Generalization: Moments

�Suppose a stream has elements chosen
from a set of n values.

�Let mi be the number of times value i
occurs.

�The k th moment is the sum of (mi)
k

over all i.

11

Special Cases

�0th moment = number of different
elements in the stream.

� The problem just considered.

�1st moment = sum of the numbers of
elements = length of the stream.

� Easy to compute.

�2nd moment = surprise number = a
measure of how uneven the distribution is.

12

Example: Surprise Number

�Stream of length 100; 11 values
appear.

�Unsurprising: 10, 9, 9, 9, 9, 9, 9, 9, 9,
9, 9. Surprise # = 910.

�Surprising: 90, 1, 1, 1, 1, 1, 1, 1 ,1, 1,
1. Surprise # = 8,110.

13

AMS Method

�Works for all moments; gives an
unbiased estimate.

�We’ll just concentrate on 2nd moment.

�Based on calculation of many random
variables X.

� Each requires a count in main memory, so
number is limited.

14

One Random Variable

�Assume stream has length n.

�Pick a random time to start, so that any
time is equally likely.

�Let the chosen time have element a in
the stream.

�X = n * ((twice the number of a ’s in the
stream starting at the chosen time) – 1).

� Note: store n once, count of a ’s for each X.

15

Expected Value of X

�2nd moment is Σa (ma)
2.

�E(X) = (1/n)(Σall times t n * (twice the
number of times the stream element at

time t appears from that time on) – 1).
�= Σa (1/n)(n)(1+3+5+…+2ma-1) .

�= Σa (ma)
2.

Time when
the last a
is seen

Time when
the penultimate
a is seen

Time when
the first a
is seenGroup times

by the value
seen

16

Combining Samples

�Compute as many variables X as can fit
in available memory.

�Average them in groups.

�Take median of averages.

�Proper balance of group sizes and number
of groups assures not only correct
expected value, but expected error goes
to 0 as number of samples gets large.

17

Problem: Streams Never End

�We assumed there was a number n,
the number of positions in the stream.

�But real streams go on forever, so n is
a variable – the number of inputs seen
so far.

18

Fixups

1. The variables X have n as a factor –
keep n separately; just hold the count
in X.

2. Suppose we can only store k counts.
We must throw some X ’s out as time
goes on.

� Objective: each starting time t is
selected with probability k /n.

19

Solution to (2)

�Choose the first k times for k
variables.

�When the n th element arrives (n > k),
choose it with probability k / n.

�If you choose it, throw one of the
previously stored variables out, with
equal probability.

20

New Topic: Counting Items

�Problem: given a stream, which items
appear more than s times in the
window?

�Possible solution: think of the stream of
baskets as one binary stream per item.

� 1 = item present; 0 = not present.

� Use DGIM to estimate counts of 1’s for all
items.

21

Extensions

� In principle, you could count frequent
pairs or even larger sets the same way.

� One stream per itemset.

� Drawbacks:

1. Only approximate.

2. Number of itemsets is way too big.

22

Approaches

1. “Elephants and troops”: a heuristic
way to converge on unusually strongly
connected itemsets.

2. Exponentially decaying windows: a
heuristic for selecting likely frequent
itemsets.

23

Elephants and Troops

�When Sergey Brin wasn’t worrying
about Google, he tried the following
experiment.

�Goal: find unusually correlated sets of
words.

� “High Correlation ” = frequency of
occurrence of set >> product of frequency
of members.

24

Experimental Setup

�The data was an early Google crawl of
the Stanford Web.

�Each night, the data would be
streamed to a process that counted a
preselected collection of itemsets.

� If {a, b, c} is selected, count {a, b, c}, {a},
{b}, and {c}.

� “Correlation” = n 2 * #abc/(#a * #b * #c).
• n = number of pages.

25

After Each Night’s Processing . . .

1. Find the most correlated sets counted.

2. Construct a new collection of itemsets
to count the next night.

� All the most correlated sets (“winners ”).

� Pairs of a word in some winner and a
random word.

� Winners combined in various ways.

� Some random pairs.

26

After a Week . . .

�The pair {“elephants”, “troops”} came
up as the big winner.

�Why? It turns out that Stanford
students were playing a Punic-War
simulation game internationally, where
moves were sent by Web pages.

27

New Topic: Mining Streams
Versus Mining DB’s

�Unlike mining databases, mining
streams doesn’t have a fixed answer.

�We’re really mining in the “Stat” point
of view, e.g., “Which itemsets are
frequent in the underlying model that
generates the stream?”

28

Stationarity

Our assumptions make a big difference:

1. Is the model stationary ?

� I.e., are the same statistics used
throughout all time to generate the stream?

2. Or does the frequency of generating
given items or itemsets change over
time?

29

Some Options for Frequent
Itemsets

1. Run periodic experiments, like E&T.

� Like SON – itemset is a candidate if it is
found frequent on any “day.”

� Good for stationary statistics.

2. Frame the problem as finding all
frequent itemsets in an “exponentially
decaying window.”

� Good for nonstationary statistics.

30

Exponentially Decaying Windows

�If stream is a1, a2,… and we are taking
the sum of the stream, take the answer
at time t to be: Σi = 1,2,…,t ai e

-c (t-i).

�c is a constant, presumably tiny, like
10-6 or 10-9.

31

Example: Counting Items

�If each ai is an “item” we can compute
the characteristic function of each
possible item x as an E.D.W.

�That is: Σi = 1,2,…,t δi e
-c (t-i), where δi = 1

if ai = x, and 0 otherwise.

� Call this sum the “count ” of item x.

32

Sliding Versus Decaying Windows

1/c

. . .

33

Counting Items – (2)

�Suppose we want to find those items of
weight at least ½.

�Important property: sum over all
weights is 1/(1 – e -c) or very close to
1/[1 – (1 – c)] = 1/c.

�Thus: at most 2/c items have weight
at least ½.

34

Extension to Larger Itemsets*

� Count (some) itemsets in an E.D.W.

� When a basket B comes in:

1. Multiply all counts by (1-c);

2. For uncounted items in B, create new count.

3. Add 1 to count of any item in B and to any
counted itemset contained in B.

4. Drop counts < ½.

5. Initiate new counts (next slide).

* Informal proposal of Art Owen

35

Initiation of New Counts

�Start a count for an itemset S ⊆B if every

proper subset of S had a count prior to
arrival of basket B.

�Example: Start counting {i, j } iff both i
and j were counted prior to seeing B.

�Example: Start counting {i, j, k } iff {i, j },
{i, k }, and {j, k } were all counted prior to
seeing B.

36

How Many Counts?

�Counts for single items < (2/c) times the
average number of items in a basket.

�Counts for larger itemsets = ??. But we
are conservative about starting counts of
large sets.

� If we counted every set we saw, one basket
of 20 items would initiate 1M counts.

