CS345
 Data Mining

Page Rank Variants

Review Page Rank

\square Web graph encoded by matrix M

- N£N matrix ($\mathrm{N}=$ number of web pages)
- $M_{i j}=1 /|O(j)|$ iff there is a link from j to i
- $M_{i j}=0$ otherwise
- $O(j)=$ set of pages node i links to
\square Define matrix A as follows
- $A_{i j}=\beta M_{i j}+(1-\beta) / N$, where $0<\beta<1$
- $1-\beta$ is the "tax" discussed in prior lecture
\square Page rank \mathbf{r} is first eigenvector of \mathbf{A}
- $\mathbf{A r}=\mathbf{r}$

Random walk interpretation

\square At time 0, pick a page on the web uniformly at random to start the walk
\square Suppose at time t , we are at page j
\square At time t+1

- With probability β, pick a page uniformly at random from $\mathrm{O}(\mathrm{j})$ and walk to it
- With probability $1-\beta$, pick a page on the web uniformly at random and teleport into it
\square Page rank of page $p=$ "steady state" probability that at any given time, the random walker is at page p

Many random walkers

\square Alternative, equivalent model
\square Imagine a large number M of independent, identical random walkers (MÀN)
\square At any point in time, let $M(p)$ be the number of random walkers at page p
\square The page rank of p is the fraction of random walkers that are expected to be at page p i.e., $E[M(p)] / M$.

Problems with page rank

\square Measures generic popularity of a page

- Biased against topic-specific authorities
- Ambiguous queries e.g., jaguar
- This lecture
\square Link spam
- Creating artificial link topographies in order to boost page rank
■ Next lecture

Topic-Specific Page Rank

\square Instead of generic popularity, can we measure popularity within a topic?

- E.g., computer science, health
- Bias the random walk
- When the random walker teleports, he picks a page from a set S of web pages
- S contains only pages that are relevant to the topic
- E.g., Open Directory (DMOZ) pages for a given topic (www.dmoz.org)
\square Correspong to each teleport set S, we get a different rank vector $\mathbf{r}_{\mathbf{s}}$

Matrix formulation

$\square A_{i j}=\beta M_{i j}+(1-\beta) /|S|$ if i $2 S$
$\square A_{i j}=\beta M_{i j}$ otherwise
\square Show that \mathbf{A} is stochastic
\square We have weighted all pages in the teleport set S equally

- Could also assign different weights to them

Example

Note how we initialize the page rank vector differently from the unbiased page rank case.

How well does TSPR work?

\square Experimental results [Haveliwala 2000]
\square Picked 16 topics

- Teleport sets determined using DMOZ
- E.g., arts, business, sports,...
\square "Blind study" using volunteers
- 35 test queries
- Results ranked using Page Rank and TSPR of most closely related topic
- E.g., bicycling using Sports ranking
- In most cases volunteers preferred TSPR ranking

Which topic ranking to use?

\square User can pick from a menu
\square Can use the context of the query

- E.g., query is launched from a web page talking about a known topic
- E.g., use Bayesian classification schemes to classify query into a topic (forthcoming lecture)
- History of queries e.g., "basketball" followed by "jordan"
\square User context e.g., user's My Yahoo settings, bookmarks, ...

Scaling with topics and users

\square Suppose we wanted to cover 1000's of topics

- Need to compute 1000's of different rank vectors
- Need to store and retrieve them efficiently at query time
- For good performance vectors must fit in memory
\square Even harder when we consider personalization
- Each user has their own teleport vector

■ One page rank vector per user!

Tricks

\square Determine a set of basis vectors so that any rank vector is a linear combination of basis vectors
\square Encode basis vectors compactly as partial vectors and a hubs skeleton
\square At runtime perform a small amount of computation to derive desired rank vector elements

Linearity Theorem

\square Let S be a teleport set and $\mathbf{r}_{\mathbf{s}}$ be the corresponding rank vector
\square For page i2S, let \mathbf{r}_{i} be the rank vector corresponding to the teleport set $\{i\}$

- \mathbf{r}_{i} is a vector with N entries
$\square \mathbf{r}_{\mathbf{s}}=(1 /|S|) \sum_{i 2 S} \mathbf{r}_{\mathrm{i}}$
\square Why is linearity important?
- Instead of 2^{N} biased page rank vectors we need to store N vectors

Linearity example

Let us compute $\mathrm{r}_{\{1,2\}}$ for $\beta=0.8$

Node	Iteration			
	0	1	$2 \ldots$	stable
1	0.1	0.1	0.164	0.300
2	0.1	0.14	0.172	0.323
3	0	0.04	0.04	0.120
4	0	0.04	0.056	0.130
5	0	0.04	0.056	0.130

Linearity example

$r_{\{1,2\}}$	r_{1}	r_{2}	$\left(r_{1}+r_{2}\right) / 2$
0.300	0.407	0.192	0.300
0.323	0.239	0.407	0.323
0.120	0.163	0.077	0.120
0.130	0.096	0.163	0.130
0.130	0.096	0.163	0.130

Intuition behind proof

\square Let's use the many-random-walkers model with M random walkers
\square Let us color a random walker with color i if his most recent teleport was to page i
\square At time t, we expect $M /|S|$ of the random walkers to be colored i
\square At any page j, we would therefore expect to find $(\mathrm{M} /|\mathrm{S}|) r_{\mathrm{i}}(\mathrm{j})$ random walkers colored i
\square So total number of random walkers at page $j=(M /|S|) \sum_{i 2 S} r_{i}(j)$

Basis Vectors

\square Suppose T = union of all teleport sets of interest

- Call it the teleport universe
\square We can compute the rank vector corresponding to any teleport set $\mathrm{S} \mu \mathrm{T}$ as a linear combination of the vectors $\mathbf{r}_{\mathbf{i}}$ for i2T
\square We call these vectors the basis vectors for T
\square We can also compute rank vectors where we assign different weights to teleport pages

Decomposition

\square Still too many basis vectors

- E.g., |T| might be in the thousands
- N|T| values
\square Decompose basis vectors into partial vectors and hubs skeleton

Tours

\square Consider a random walker with teleport set \{i\}

- Suppose walker is currently at node j
\square The random walker's tour is the sequence of nodes on the walker's path since the last teleport
- E.g., i,a,b,c,a,j
- Nodes can repeat in tours - why?
\square Interior nodes of the tour $=\{a, b, c, j\}$
\square Start node $=\{\mathrm{i}\}$, end node $=\{\mathrm{j}\}$
- A page can be both start node and interior node, etc

Tour splitting

\square Consider random walker with teleport set $\{i\}$, biased rank vector r_{i}
$\square r_{i}(j)=$ probability random walker reaches j by following some tour with start node i and end node j
\square Consider node k

- Can have $\underset{k}{i=k}$ or $j=k$

Tour splitting

\square Let $r_{i}^{k}(j)$ be the probability that random surfer reaches page j through a tour that includes page k as an interior node or end node
\square Let $r_{i}{ }^{\sim k}(\mathrm{j})$ be the probability that random surfer reaches page j through a tour that does not include k as an interior node or end node

$$
\square r_{i}(j)=r_{i}^{k}(j)+r_{i}^{\sim k}(j)
$$

Example

Let us compute $r_{1}{ }^{\sim 2}$ for $\beta=0.8$

Node	Iteration				
	0	1	$2 \ldots$	stable	
	0.2	0.2	0.264	0.294	
Note that					
2	0	0	0	0	many entries are
3	0	0.08	0.08	0.118	zeros
4	0	0	0	0	
5	0	0	0	0	

Example

Let us compute $r_{2}{ }^{\sim 2}$ for $\beta=0.8$

Node	Iteration			
	0	1	$2 \ldots$	stable
1	0	0	0.064	0.094
2	0.2	0.2	0.2	0.2
3	0	0	0	0.038
4	0	0.08	0.08	0.08
5	0	0.08	0.08	0.08

Rank composition

\square Notice:

$$
\left.\begin{array}{l}
r_{1}^{2}(3)=r_{1}(3)-r_{1}^{\sim 2}(3) \\
=
\end{array} \quad 0.163-0.118=0.045\right) ~ \begin{aligned}
r_{1}(2) * r_{2}^{\sim 2}(3) & =0.239 * 0.038 \\
& =0.009 \\
& =0.2 * 0.045 \\
& =(1-\beta) * r_{1}^{2}(3)
\end{aligned} \quad \begin{aligned}
r_{1}^{2}(3) & =r_{1}(2) r_{2}^{\sim 2}(3) /(1-\beta)
\end{aligned}
$$

Rank composition

$$
\begin{aligned}
& \underset{i}{\sim} \xrightarrow{r_{i}(k)} \underset{k}{0} \xrightarrow[j]{r_{k}^{\sim k}(j)} \underset{j}{0} \\
& r_{i}^{k}(j)=r_{i}(k) r_{k}^{\sim k}(j) /(1-\beta)
\end{aligned}
$$

Hubs

\square Instead of a single page k, we can use a set H of "hub" pages

- Define $r_{i}^{\sim H}(\mathrm{j})$ as set of tours from i to j that do not include any node from H as interior nodes or end node

Hubs example

$$
\begin{aligned}
& H=\{1,2\} \\
& \beta=0.8
\end{aligned}
$$

Node	$\mathrm{r}_{2}^{\sim H}$			$\mathrm{r}_{1}^{\sim H}$			
	Iteration			Node	Iteration		
	0	1	stable		0	1	stable
1	0	0	0	1	0.2	0	0.2
2	0.2	0.2	0.2	2	0	0	0
3	0	0	0	3	0	0.08	0.08
4	0	0.08	0.08	4	0	0	0
5	0	0.08	0.08	5	0	0	0

Rank composition with hubs

Hubs rule example

$$
\begin{aligned}
r_{2}(3) & =r_{2}^{\sim H}(3)+r_{2}^{H}(3)=0+r_{2}^{H}(3) \\
& =\left[r_{2}(1) r_{1}^{\sim H}(3)\right] / 0.2+\left[\left(r_{2}(2)-0.2\right) r_{2}^{\sim H}(3)\right] / 0.2 \\
& =[0.192 * 0.08] / 0.2+\left[(0.407-0.2)^{*} 0\right] / 0.2 \\
& =0.077
\end{aligned}
$$

Hubs

\square Start with $\mathrm{H}=\mathrm{T}$, the teleport universe
\square Add nodes to H such that given any pair of nodes i and j, there is a high probability that H separates i and j

- i.e., $r_{i}^{\sim H}(j)$ is zero for most i, j pairs
\square Observation: high page rank nodes are good separators and hence good hub nodes

Hubs skeleton

\square To compute $r_{i}(j)$ we need:

- $\mathrm{r}_{\mathrm{i}}{ }^{\sim H}(\mathrm{j})$ for all $\mathrm{i} 2 \mathrm{H}, \mathrm{j} 2 \mathrm{~V}$
\square called the partial vector
\square Sparse
- $r_{i}(h)$ for all h2H
\square called the hubs skeleton

Storage reduction

\square Say $|T|=1000,|H|=2000, N=1$ billion
\square Store all basis vectors

- 1000*1 billion = 1 trillion nonzero values
\square Use partial vectors and hubs skeleton
- Suppose each partial vector has N/200 nonzero entries
- Partial vectors $=2000 *$ N/200 $=10$ billion nonzero values
- Hubs skeleton $=2000 * 2000=4$ million values
- Total = approx 10 billion nonzero values
\square Approximately $100 x$ compression

