CS345 Data Mining

Page Rank Variants

Review Page Rank

Web graph encoded by matrix M

- N£N matrix (N = number of web pages)
- $M_{ij} = 1/|O(j)|$ iff there is a link from j to i
- $M_{ij} = 0$ otherwise
- O(j) = set of pages node i links to
- Define matrix A as follows
 - $A_{ij} = \beta M_{ij} + (1-\beta)/N$, where $0 < \beta < 1$
 - **1**- β is the "tax" discussed in prior lecture
- Page rank r is first eigenvector of A
 - Ar = r

Random walk interpretation

- At time 0, pick a page on the web uniformly at random to start the walk
- Suppose at time t, we are at page j
- At time t+1
 - With probability β, pick a page uniformly at random from O(j) and walk to it
 - With probability 1-β, pick a page on the web uniformly at random and teleport into it
- Page rank of page p = "steady state" probability that at any given time, the random walker is at page p

Many random walkers

- Alternative, equivalent model
- Imagine a large number M of independent, identical random walkers (MÀN)
- At any point in time, let M(p) be the number of random walkers at page p
- The page rank of p is the fraction of random walkers that are expected to be at page p i.e., E[M(p)]/M.

Problems with page rank

- Measures generic popularity of a page
 - Biased against topic-specific authorities
 - Ambiguous queries e.g., jaguar
 - This lecture
- Link spam
 - Creating artificial link topographies in order to boost page rank
 - Next lecture

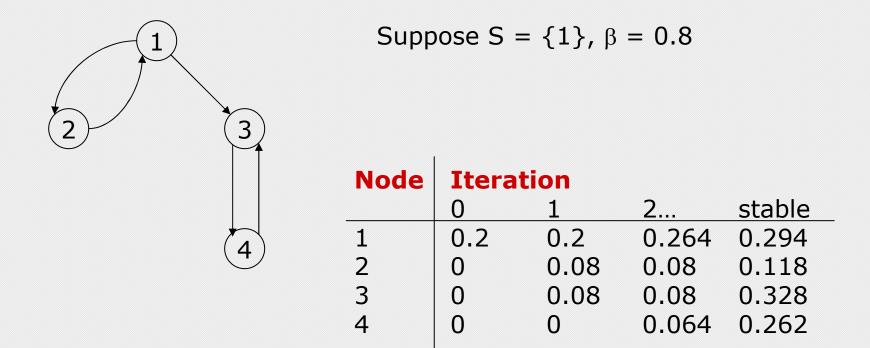
Topic-Specific Page Rank

- Instead of generic popularity, can we measure popularity within a topic?
 - E.g., computer science, health
- Bias the random walk
 - When the random walker teleports, he picks a page from a set S of web pages
 - S contains only pages that are relevant to the topic
 - E.g., Open Directory (DMOZ) pages for a given topic (<u>www.dmoz.org</u>)
- Correspong to each teleport set S, we get a different rank vector r_s

Matrix formulation

- $\Box A_{ij} = \beta M_{ij} + (1-\beta)/|S| \text{ if } i 2 S$
- $\Box A_{ij} = \beta M_{ij}$ otherwise
- □ Show that **A** is stochastic
- We have weighted all pages in the teleport set S equally
 - Could also assign different weights to them

Example



Note how we initialize the page rank vector differently from the unbiased page rank case.

How well does TSPR work?

Experimental results [Haveliwala 2000]

Picked 16 topics

- Teleport sets determined using DMOZ
- E.g., arts, business, sports,...
- "Blind study" using volunteers
 - 35 test queries
 - Results ranked using Page Rank and TSPR of most closely related topic
 - E.g., bicycling using Sports ranking
 - In most cases volunteers preferred TSPR ranking

Which topic ranking to use?

- User can pick from a menu
- □ Can use the **context** of the query
 - E.g., query is launched from a web page talking about a known topic
 - E.g., use Bayesian classification schemes to classify query into a topic (forthcoming lecture)
 - History of queries e.g., "basketball" followed by "jordan"
- User context e.g., user's My Yahoo settings, bookmarks, ...

Scaling with topics and users

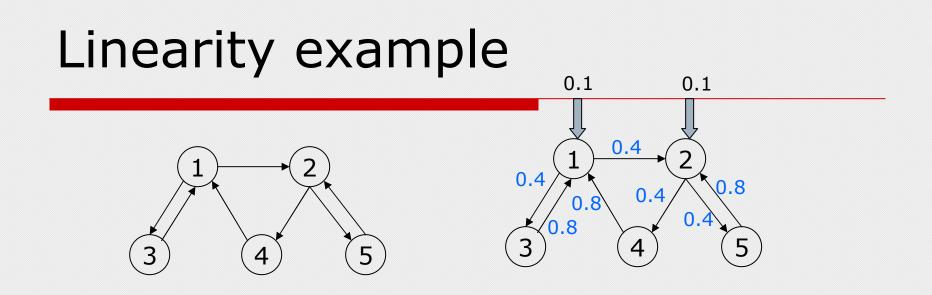
- Suppose we wanted to cover 1000's of topics
 - Need to compute 1000's of different rank vectors
 - Need to store and retrieve them efficiently at query time
 - For good performance vectors must fit in memory
- Even harder when we consider personalization
 - Each user has their own teleport vector
 - One page rank vector per user!

Tricks

- Determine a set of basis vectors so that any rank vector is a linear combination of basis vectors
- Encode basis vectors compactly as partial vectors and a hubs skeleton
- At runtime perform a small amount of computation to derive desired rank vector elements

Linearity Theorem

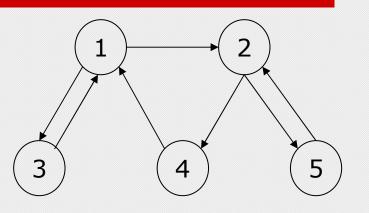
- Let S be a teleport set and r_s be the corresponding rank vector
- □ For page i2S, let **r**_i be the rank vector corresponding to the teleport set {i}
 - **r**_i is a vector with N entries
- $\Box \mathbf{r}_{\mathbf{S}} = (1/|\mathbf{S}|) \sum_{i2S} \mathbf{r}_{i}$
- Why is linearity important?
 - Instead of 2^N biased page rank vectors we need to store N vectors



Let us compute $r_{\{1,2\}}$ for $\beta = 0.8$

Node	Iteration					
	0	1	2	stable		
1	0.1	0.1	0.164	0.300		
2	0.1	0.14	0.172	0.323		
3	0	0.04	0.04	0.120		
4	0	0.04	0.056	0.130		
5	0	0.04	0.056	0.130		

Linearity example



r _{1,2}	r_1	r ₂	$(r_1 + r_2)/2$	
0.300	0.407	0.192	0.300	
0.323	0.239	0.407	0.323	
0.120	0.163	0.077	0.120	
0.130	0.096	0.163	0.130	
0.130	0.096	0.163	0.130	

Intuition behind proof

- Let's use the many-random-walkers model with M random walkers
- Let us color a random walker with color i if his most recent teleport was to page i
- At time t, we expect M/|S| of the random walkers to be colored i
- At any page j, we would therefore expect to find (M/|S|)r_i(j) random walkers colored i
- □ So total number of random walkers at page j = (M/|S|)∑_{i2S}r_i(j)

Basis Vectors

- Suppose T = union of all teleport sets of interest
 - Call it the teleport universe
- We can compute the rank vector corresponding to any teleport set SµT as a linear combination of the vectors r_i for i2T
- □ We call these vectors the basis vectors for T
- We can also compute rank vectors where we assign different weights to teleport pages

Decomposition

Still too many basis vectors

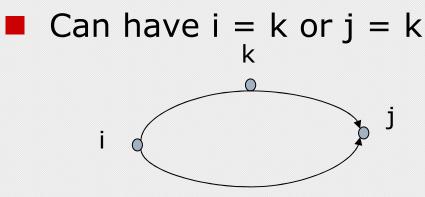
- E.g., |T| might be in the thousands
- N|T| values
- Decompose basis vectors into partial vectors and hubs skeleton

Tours

- □ Consider a random walker with teleport set {i}
 - Suppose walker is currently at node j
- The random walker's tour is the sequence of nodes on the walker's path since the last teleport
 - E.g., i,a,b,c,a,j
 - Nodes can repeat in tours why?
- □ Interior nodes of the tour = $\{a,b,c,j\}$
- □ Start node = $\{i\}$, end node = $\{j\}$
 - A page can be both start node and interior node, etc

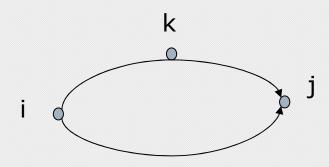
Tour splitting

- Consider random walker with teleport set {i}, biased rank vector r_i
- r_i(j) = probability random walker reaches j by following some tour with start node i and end node j
- Consider node k

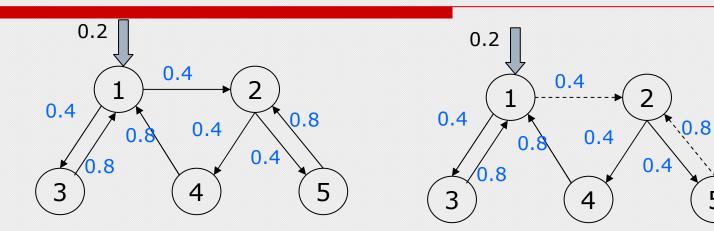


Tour splitting

- Let r_i^k(j) be the probability that random surfer reaches page j through a tour that includes page k as an interior node or end node
- Let r_i~k(j) be the probability that random surfer reaches page j through a tour that does not include k as an interior node or end node
- $\Box r_i(j) = r_i^k(j) + r_i^{k}(j)$



Example



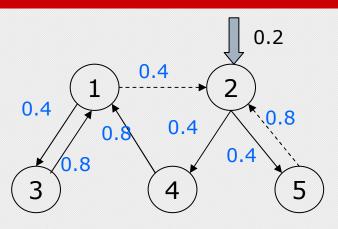
Let us compute $r_1^{\sim 2}$ for $\beta = 0.8$

Node	Iteration						
	0	1	2	stable			
1	0.2	0.2	0.264	0.294			
2	0	0	0	0			
3	0	0.08	0.08	0.118			
4	0	0	0	0			
5	0	0	0	0			

Note that many entries are zeros

5

Example



Let us compute $r_2^{\sim 2}$ for $\beta = 0.8$

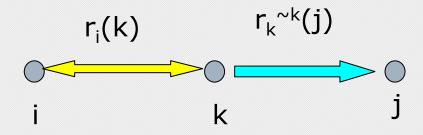
Node	Iteration					
	0	1	2	stable		
1	0	0	0.064	0.094		
2	0.2	0.2	0.2	0.2		
3	0	0	0	0.038		
4	0	0.08	0.08	0.08		
5	0	0.08	0.08	0.08		

Rank composition

□ Notice:

$$r_1^2(3) = r_1(3) - r_1^{2}(3)$$
 $= 0.163 - 0.118 = 0.045$
 $r_1(2) * r_2^{2}(3) = 0.239 * 0.038$
 $= 0.009$
 $= 0.2 * 0.045$
 $= (1 - \beta) * r_1^2(3)$
 $r_1^2(3) = r_1(2) r_2^{2}(3) / (1 - \beta)$

Rank composition

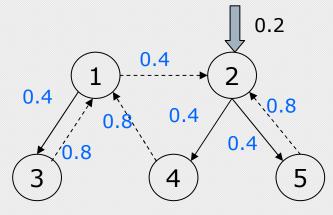


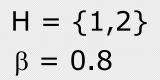
 $r_{i}^{k}(j) = r_{i}(k)r_{k}^{k}(j)/(1-\beta)$

Hubs

- Instead of a single page k, we can use a set H of "hub" pages
 - Define r_i^{~H}(j) as set of tours from i to j that do not include any node from H as interior nodes or end node

Hubs example



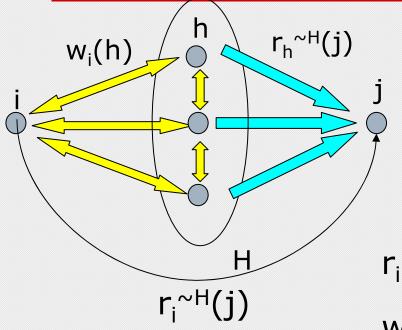


r	~	나	1
2	2		•

Node	Itera	tion		Node	Itera	tion	
	0	1	stable		0	1	stable
1	0	0	0	1	0.2	0	0.2
2	0.2	0.2	0.2	2	0	0	0
3	0	0	0	3	0	0.08	0.08
4	0	0.08	0.08	4	0	0	0
5	0	0.08	0.08	5	0	0	0

Rank composition with hubs

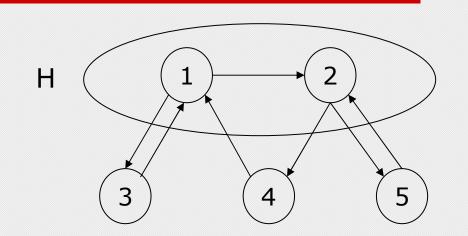
V



$$r_{i}(j) = r_{i}^{H}(j) + r_{i}^{H}(j)$$

 $h_{i}^{H}(j) = \sum_{h2H} w_{i}(h) r_{h}^{H}(j) / (1-\beta)$
 $w_{i}(h) = r_{i}(h) \text{ if } i \neq h$
 $w_{i}(h) = r_{i}(h) - (1-\beta) \text{ if } i = h$

Hubs rule example



$$H = \{1,2\}$$

 $\beta = 0.8$

 $\begin{aligned} r_2(3) &= r_2^{\sim H}(3) + r_2^{H}(3) = 0 + r_2^{H}(3) \\ &= [r_2(1)r_1^{\sim H}(3)]/0.2 + [(r_2(2)-0.2)r_2^{\sim H}(3)]/0.2 \\ &= [0.192*0.08]/0.2 + [(0.407-0.2)*0]/0.2 \\ &= 0.077 \end{aligned}$

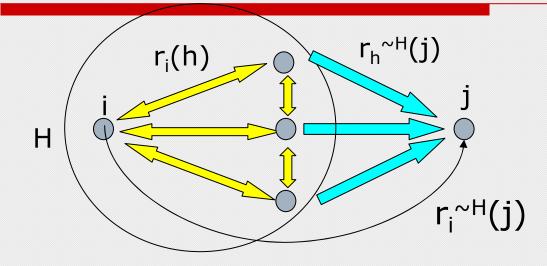
Hubs

- \Box Start with H = T, the teleport universe
- Add nodes to H such that given any pair of nodes i and j, there is a high probability that H separates i and j

i.e., r_i^{~H}(j) is zero for most i,j pairs

Observation: high page rank nodes are good separators and hence good hub nodes

Hubs skeleton



- \Box To compute $r_i(j)$ we need:
 - **r**_i H (j) for all i2H, j2V
 - □ called the partial vector
 - □ Sparse
 - r_i(h) for all h2H
 - called the hubs skeleton

Storage reduction

- □ Say |T| = 1000, |H|=2000, N = 1 billion
- Store all basis vectors
 - 1000*1 billion = 1 trillion nonzero values
- Use partial vectors and hubs skeleton
 - Suppose each partial vector has N/200 nonzero entries
 - Partial vectors = 2000*N/200 = 10 billion nonzero values
 - Hubs skeleton = 2000*2000 = 4 million values
 - Total = approx 10 billion nonzero values
- Approximately 100x compression