“Association Rules”

Market Baskets
Frequent Itemsets
A-priori Algorithm
The Market-Basket Model

- A large set of *items*, e.g., things sold in a supermarket.
- A large set of *baskets*, each of which is a small set of the items, e.g., the things one customer buys on one day.
Support

- Simplest question: find sets of items that appear “frequently” in the baskets.
- \textit{Support} for itemset $I = \text{the number of baskets containing all items in } I$.
- Given a support threshold s, sets of items that appear in $\geq s$ baskets are called \textit{frequent itemsets}.
Example

- **Items=**{milk, coke, pepsi, beer, juice}.
- **Support =** 3 baskets.

 - B1 = {m, c, b}
 - B2 = {m, p, j}
 - B3 = {m, b}
 - B4 = {c, j}
 - B5 = {m, p, b}
 - B6 = {m, c, b, j}
 - B7 = {c, b, j}
 - B8 = {b, c}

- **Frequent itemsets:** {m}, {c}, {b}, {j}, {m, b}, {c, b}, {j, c}.
Applications --- (1)

- Real market baskets: chain stores keep terabytes of information about what customers buy together.
 - Tells how typical customers navigate stores, lets them position tempting items.
 - Suggests tie-in “tricks,” e.g., run sale on diapers and raise the price of beer.
- High support needed, or no $$’s .
Applications --- (2)

◆ “Baskets” = documents; “items” = words in those documents.
 ▶ Lets us find words that appear together unusually frequently, i.e., linked concepts.

◆ “Baskets” = sentences, “items” = documents containing those sentences.
 ▶ Items that appear together too often could represent plagiarism.
Applications --- (3)

◆ “Baskets” = Web pages; “items” = linked pages.
 • Pairs of pages with many common references may be about the same topic.

◆ “Baskets” = Web pages \(p \); “items” = pages that link to \(p \).
 • Pages with many of the same links may be mirrors or about the same topic.
“Market Baskets” is an abstraction that models any many-many relationship between two concepts: “items” and “baskets.”

- Items need not be “contained” in baskets.

The only difference is that we count co-occurrences of items related to a basket, not vice-versa.
Scale of Problem

- WalMart sells 100,000 items and can store billions of baskets.
- The Web has over 100,000,000 words and billions of pages.
Association Rules

◆ If-then rules about the contents of baskets.
◆ \{i_1, i_2, ..., i_k\} \rightarrow j \ means: “if a basket contains all of \ i_1, ..., i_k \ then it is likely to contain \ j."
◆ \textit{Confidence} of this association rule is the probability of \ j \ given \ i_1, ..., i_k.
Example

+ B1 = \{m, c, b\} \quad B2 = \{m, p, j\}

– B3 = \{m, b\} \quad B4 = \{c, j\}

– B5 = \{m, p, b\} \quad + B6 = \{m, c, b, j\}

B7 = \{c, b, j\} \quad B8 = \{b, c\}

◆ An association rule: \{m, b\} \rightarrow c.

◆ Confidence = \frac{2}{4} = 50\%.
Interest

The *interest* of an association rule is the absolute value of the amount by which the confidence differs from what you would expect, were items selected independently of one another.
Example

\begin{align*}
 B_1 &= \{m, c, b\} \\
 B_2 &= \{m, p, j\} \\
 B_3 &= \{m, b\} \\
 B_4 &= \{c, j\} \\
 B_5 &= \{m, p, b\} \\
 B_6 &= \{m, c, b, j\} \\
 B_7 &= \{c, b, j\} \\
 B_8 &= \{b, c\}
\end{align*}

\textcolor{red}{\blacksquare} \text{For association rule } \{m, b\} \rightarrow c, \text{ item } c \text{ appears in } 5/8 \text{ of the baskets.}

\textcolor{green}{\blacksquare} \text{Interest } = |2/4 - 5/8| = 1/8 --- not very interesting.
Relationships Among Measures

- Rules with high support and confidence may be useful even if they are not “interesting.”
 - We don’t care if buying bread causes people to buy milk, or whether simply a lot of people buy both bread and milk.

- But high interest suggests a cause that might be worth investigating.
Finding Association Rules

◆ A typical question: “find all association rules with support ≥ s and confidence ≥ c.”
 - Note: “support” of an association rule is the support of the set of items it mentions.

◆ Hard part: finding the high-support (frequent) itemsets.
 - Checking the confidence of association rules involving those sets is relatively easy.
Computation Model

- Typically, data is kept in a “flat file” rather than a database system.
 - Stored on disk.
 - Stored basket-by-basket.
 - Expand baskets into pairs, triples, etc. as you read baskets.
Computation Model --- (2)

- The true cost of mining disk-resident data is usually the **number of disk I/O’s**.
- In practice, association-rule algorithms read the data in passes --- all baskets read in turn.
- Thus, we measure the cost by the number of passes an algorithm takes.
Main-Memory Bottleneck

◆ In many algorithms to find frequent itemsets we need to worry about how main memory is used.
 ▶ As we read baskets, we need to count something, e.g., occurrences of pairs.
 ▶ The number of different things we can count is limited by main memory.
 ▶ Swapping counts in/out is a disaster.
Finding Frequent Pairs

- The hardest problem often turns out to be finding the frequent pairs.
- We’ll concentrate on how to do that, then discuss extensions to finding frequent triples, etc.
Naïve Algorithm

◆ A simple way to find frequent pairs is:
 ♦ Read file once, counting in main memory the occurrences of each pair.
 • Expand each basket of \(n \) items into its \(n \frac{(n - 1)}{2} \) pairs.

◆ Fails if \#items-squared exceeds main memory.
Details of Main-Memory Counting

◆ There are two basic approaches:

1. Count all item pairs, using a triangular matrix.

2. Keep a table of triples \([i, j, c]\) = the count of the pair of items \(\{i, j\}\) is \(c\).

◆ (1) requires only (say) 4 bytes/pair; (2) requires 12 bytes, but only for those pairs with \(>0\) counts.
Method (1) 4 per pair

Method (2) 12 per occurring pair
Details of Approach (1)

- Number items 1, 2, ...
- Keep pairs in the order \{1,2\}, \{1,3\}, ..., \{1,n\}, \{2,3\}, \{2,4\}, ... \{2,n\}, \{3,4\}, ..., \{3,n\}, ..., \{n-1,n\}.
- Find pair \{i, j\} at the position
 \[(i-1)(n-i/2) + j - i.\]
- Total number of pairs \(n(n-1)/2\); total bytes about \(2n^2\).
Details of Approach (2)

◆ You need a hash table, with \(i \) and \(j \) as the key, to locate \((i, j, c)\) triples efficiently.
 ♦ Typically, the cost of the hash structure can be neglected.

◆ Total bytes used is about \(12p\), where \(p \) is the number of pairs that actually occur.
 ♦ Beats triangular matrix if at most 1/3 of possible pairs actually occur.
A-Priori Algorithm --- (1)

- A two-pass approach called \textit{a-priori} limits the need for main memory.
- Key idea: \textit{monotonicity}: if a set of items appears at least s times, so does every subset.
 - Contrapositive for pairs: if item i does not appear in s baskets, then no pair including i can appear in s baskets.
A-Priori Algorithm --- (2)

Pass 1: Read baskets and count in main memory the occurrences of each item.
- Requires only memory proportional to #items.

Pass 2: Read baskets again and count in main memory only those pairs both of which were found in Pass 1 to be frequent.
- Requires memory proportional to square of frequent items only.
Picture of A-Priori

- Item counts
- Frequent items
 - Counts of candidate pairs

Pass 1
Pass 2
Detail for A-Priori

◆ You can use the triangular matrix method with $n =$ number of frequent items.
 ♦ Saves space compared with storing triples.

◆ Trick: number frequent items 1,2,... and keep a table relating new numbers to original item numbers.
Frequent Triples, Etc.

For each k, we construct two sets of k-tuples:

- $C_k =$ candidate k-tuples = those that might be frequent sets (support $\geq s$) based on information from the pass for $k-1$.
- $L_k =$ the set of truly frequent k-tuples.
First pass

Second pass
A-Priori for All Frequent Itemsets

- One pass for each k.
- Needs room in main memory to count each candidate k-tuple.
- For typical market-basket data and reasonable support (e.g., 1%), $k = 2$ requires the most memory.
Frequent Itemsets --- (2)

- $C_1 = \text{all items}$
- $L_1 = \text{those counted on first pass to be frequent.}$
- $C_2 = \text{pairs, both chosen from } L_1.$
- In general, $C_k = k-$tuples each $k-1$ of which is in $L_{k-1}.$
- $L_k = \text{those candidates with support } \geq s.$