More Clustering

CURE Algorithm
Clustering Streams
The CURE Algorithm

◆ Problem with BFR/k-means:
 ◆ Assumes clusters are normally distributed in each dimension.
 ◆ And axes are fixed --- ellipses at an angle are not OK.

◆ CURE:
 ◆ Assumes a Euclidean distance.
 ◆ Allows clusters to assume any shape.
Example: Stanford Faculty Salaries
Starting CURE

1. Pick a random sample of points that fit in main memory.
2. Cluster these points hierarchically --- group nearest points/clusters.
3. For each cluster, pick a sample of points, as dispersed as possible.
4. From the sample, pick representatives by moving them (say) 20% toward the centroid of the cluster.
Example: Initial Clusters

- Salary
- Age
Example: Pick Dispersed Points

Pick (say) 4 remote points for each cluster.
Example: Pick Dispersed Points

Move points (say) 20% toward the centroid.
Finishing CURE

Now, visit each point p in the data set.
Place it in the “closest cluster.”

- Normal definition of “closest”: that cluster with the closest (to p) among all the sample points of all the clusters.
Clustering a Stream (New Topic)

- Assume points enter in a stream.
- Maintain a sliding window of points.
- Queries ask for clusters of points within some suffix of the window.
- Only important issue: where are the cluster centroids.
 - There is no notion of “all the points” in a stream.
BDMO Approach

◆ BDMO = Babcock, Datar, Motwani, O’Callaghan.
◆ k –means based.
◆ Can use less than $O(N)$ space for windows of size N.
◆ Generalizes trick of DGIM: buckets of increasing “weight.”
Recall DGIM

- Maintains a sequence of buckets B_1, B_2, \ldots
- Buckets have timestamps (most recent stream element in bucket).
- Sizes of buckets nondecreasing.
 - In DGIM size = power of 2.
- Either 1 or 2 of each size.
Alternative Combining Rule

◆ Instead of “combine the 2nd and 3rd of any one size” we could say:
◆ “Combine B_{i+1} and B_i if $\text{size}(B_{i+1} \cup B_i) < \text{size}(B_{i-1} \cup B_{i-2} \cup \ldots \cup B_1)$.”
 ◆ If B_{i+1}, B_i, and B_{i-1} are the same size, inequality must hold (almost).
 ◆ If B_{i-1} is smaller, it cannot hold.
Buckets for Clustering

- In place of “size” (number of 1’s) we use (an approximation to) the sum of the distances from all points to the centroid of their cluster.
- Merge consecutive buckets if the “size” of the merged bucket is less than the sum of the sizes of all later buckets.
Consequence of Merge Rule

♦ In a stable list of buckets, any two consecutive buckets are “bigger” than all smaller buckets.

♦ Thus, “sizes” grow exponentially.

♦ If there is a limit on total “size,” then the number of buckets is $O(\log N)$.
 - $N = \text{window size}$.
 - E.g., all points are in a fixed hypercube.
Outline of Algorithm

1. What do buckets look like?
 - Clusters at various levels, represented by centroids.

2. How do we merge buckets?
 - Keep # of clusters at each level small.

3. What happens when we query?
 - Final clustering of all clusters of all relevant buckets.
Organization of Buckets

- Each bucket consists of clusters at some number of levels.
 - 4 levels in our examples.
- Clusters represented by:
 1. Location of centroid.
 2. Weight = number of points in the cluster.
 3. Cost = upper bound on sum of distances from member points to centroid.
Processing Buckets --- (1)

- Actions determined by N (window size) and k (desired number of clusters).
- Also uses a tuning parameter τ for which we use $1/4$ to simplify.
 - $1/\tau$ is the number of levels of clusters.
Processing Buckets --- (2)

◆ Initialize a new bucket with \(k \) new points.
 ◆ Each is a cluster at level 0.
◆ If the timestamp of the oldest bucket is outside the window, delete that bucket.
Level-0 Clusters

- A single point p is represented by $(p, 1, 0)$.
- That is:
 1. A point is its own centroid.
 2. The cluster has one point.
 3. The sum of distances to the centroid is 0.
Merging Buckets --- (1)

- Needed in two situations:
 1. We have to process a query, which requires us to (temporarily) merge some tail of the bucket sequence.
 2. We have just added a new (most recent) bucket and we need to check the rule about two consecutive buckets being “bigger” than all that follow.
Merging Buckets --- (2)

◆ **Step 1**: Take the union of the clusters at each level.

◆ **Step 2**: If the number of clusters (points) at level 0 is now more than $N^{1/4}$, cluster them into k clusters.
 - These become clusters at level 1.

◆ **Steps 3,...**: Repeat, going up the levels, if needed.
Representing New Clusters

- **Centroid** = weighted average of centroids of component clusters.
- **Weight** = sum of weights.
- **Cost** = sum over all component clusters of:
 1. Cost of component cluster.
 2. Weight of component times distance from its centroid to new centroid.
Example: New Centroid

Weights: 10

Centroids: (3,3) + (12,12) + (12,2) + (18,-2)

New Centroid: 5 + (12,12)
Example: New Costs

old cost

(3,3)

added

true cost

(12,2)

+ (18,-2)

+ (12,12)

15

+ (18,-2)

5
Queries

- Find all the buckets within the range of the query.
 - The last bucket may be only partially within the range.

- Cluster all clusters at all levels into k clusters.

- Return the k centroids.
Error in Estimation

- Goal is to pick the k centroids that minimize the *true* cost (sum of distances from each point to its centroid).

- Since recorded “costs” are inexact, there can be a factor of 2 error at each level.

- Additional error because some of last bucket may not belong.
 - But fraction of spurious points is small (why?).
Effect of Cost-Errors

1. Alter when buckets get combined.
 - Not really important.
2. Produce suboptimal clustering at any stage of the algorithm.
 - The real measure of how bad the output is.
Speedup of Algorithm

◆ As given, algorithm is slow.
 ♦ Each new bucket causes $O(\log N)$ bucket-merger problems.

◆ A faster version allows the first bucket to have not k, but $N^{1/2}$ (or in general N^{2^τ}) points.
 ♦ A number of consequences, including slower queries, more space.