More Stream-Mining

Counting How Many Elements
Computing “Moments”
Counting Distinct Elements

Problem: a data stream consists of elements chosen from a set of size n. Maintain a count of the number of distinct elements seen so far.

Obvious approach: maintain the set of elements seen.
Applications

◆ How many different words are found among the Web pages being crawled at a site?
 ♦ Unusually low or high numbers could indicate artificial pages (spam?).

◆ How many different Web pages does each customer request in a week?
Using Small Storage

- **Real Problem**: what if we do not have space to store the complete set?
- Estimate the count in an unbiased way.
- Accept that the count may be in error, but limit the probability that the error is large.
Flajolet-Martin* Approach

- Pick a hash function h that maps each of the n elements to $\log_2 n$ bits, uniformly.
 - Important that the hash function be (almost) a random permutation of the elements.
- For each stream element a, let $r(a)$ be the number of trailing 0’s in $h(a)$.
- Record $R =$ the maximum $r(a)$ seen.
- Estimate $= 2^R$.

* Really based on a variant due to AMS (Alon, Matias, and Szegedy)
Why It Works

◆ The probability that a given element \(a \) has \(h(a) \geq r \) is \(2^{-r} \).

◆ If there are \(m \) elements in the stream, the probability that \(R \geq r \) is \(1 - (1 - 2^{-r})^m \).

◆ If \(2^r >> m \), prob \(\approx m / 2^r \) (small).

◆ If \(2^r << m \), prob \(\approx 1 \).

◆ Thus, \(2^R \) will almost always be around \(m \).
Why It Doesn’t Work

◆ $E(2^R)$ is actually infinite.
 ♦ Probability halves when $R \rightarrow R + 1$, but value doubles.

◆ That means using many hash functions and getting many samples.

◆ How are samples combined?
 ♦ Average? What if one very large value?
 ♦ Median? All values are a power of 2.
Solution

- Partition your samples into small groups.
- Take the average of groups.
- Then take the median of the averages.
Moments (New Topic)

◆ Suppose a stream has elements chosen from a set of n values.
◆ Let m_i be the number of times value i occurs.
◆ The kth moment is the sum of $(m_i)^k$ over all i.

Special Cases

◆ **0th moment =** number of different elements in the stream.
 - The problem just considered.

◆ **1st moment =** sum of the numbers of elements = length of the stream.
 - Easy to compute.

◆ **2nd moment =** *surprise number* = a measure of how uneven the distribution is.
Example: Surprise Number

- Stream of length 100; 11 values appear.
- Unsurprising: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9. Surprise # = 910.
- Surprising: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1. Surprise # = 8,110.
AMS Method

- Works for all moments; gives an unbiased estimate.
- We’ll just concentrate on 2nd moment.
- Based on calculation of many random variables X.
 - Each requires a count in main memory, so number is limited.
One Random Variable

- Assume stream has length n.
- Pick a random time to start, so that any time is equally likely.
- Let the chosen time have element a in the stream.
- $X = n \times ((\text{twice the number of } a \text{'s in the stream starting at the chosen time}) - 1)$.

Expected Value of X

- 2^{nd} moment is $\Sigma_a (m_a)^2$.
- $E(X) = \frac{1}{n} \left(\Sigma_{\text{all times } t \text{ of } n} * (\text{twice the number of times the stream element at time } t \text{ appears from that time on}) - 1 \right)$.
- $= \Sigma_a \left(\frac{1}{n} \right) (n)(1+3+5+\ldots+2m_a-1)$.
- $= \Sigma_a (m_a)^2$.
Combining Samples

◆ Compute as many variables X as can fit in available memory.
◆ Average them in groups.
◆ Take median of averages.
◆ Proper balance of group sizes and number of groups assures not only correct expected value, but expected error goes to 0 as number of samples gets large.
Problem: Streams Never End

- We assumed there was a number n, the number of positions in the stream.
- But real streams go on forever, so n is a variable --- the number of elements seen so far.
Fixups

1. The variables X have n as a factor --- need to scale as n grows.

2. Suppose we can only store k counts. We must throw some X’s out as time goes on.
 - Objective: each X is selected with probability k/n.
Solution to (2)

- Choose the first k elements.
- When the n^{th} element arrives ($n > k$), choose it with probability k/n.
- If you choose it, throw one of the previously stored variables out, with equal probability.