CS345

Compact Skeletons

Compact Skeletons

- Assume tuples components are scattered over website
- We have a tagger that can tag all tuple components on website
- Assume no noise for now
- Reconstruct relation

Compact Skeletons

Relation
\uparrow
Skeleton
1
Data Graph

Website

Address (A)

T	S	D	A
Programmer	100 K	R \&D	1200 Jose Blvd
CTO	150 K	R \& D	1200 Jose Blvd
Admin Asst	60K	Corporate	$4007^{\text {th }}$ Ave
CEO	(null)	Corporate	$4007^{\text {th }}$ Ave

T	S	D	A
Programmer	100 K	R \&D	1200 Jose Blvd
CTO	150K	R \& D	1200 Jose Blvd
Admin Asst	60K	Corporate	1200 Jose Blvd
CEO	(null)	Corporate	1200 Jose Blvd

Relation

Skeleton I
Data Graph i
Website

Skeletons

- Labeled trees
- Transformation from data graphs to relations

Overlays

Overlays

T	S	D	A
Programmer	100K	R \&D	1200 Jose Blvd

Overlays

T	S	D	A
Programmer	100 K	R \&D	1200 Jose Blvd
CTO	150K	R \&D	1200 Jose Blvd

Overlays

Programmer 100K CTO 150K

Overlays

Overlays

T	S	D	A
Programmer	150 K	$\mathrm{R} \& \mathrm{D}$	1200 Jose Blvd
CTO	100 K	R \& D	1200 Jose Blvd

Inconsistent Overlays

Programmer 100K CTO 150K

Inconsistent Overlays

Programmer 100K CTO 150K

Compact Skeletons

- A skeleton is compact if all overlays are consistent
- Perfect if each node and edge of data graph is covered by at least one overlay
- Given a data graph G, does G have a Perfect Compact Skeleton (PCS)?
- Not always
- But if it exists it is unique

PCS Algorithm

Programmer 100K CTO 150K

PCS Algorithm

Work bottom-up:
Compute node signatures
Place nodes in equivalence classes based on signature Construct skeleton from equivalence classes

PCS Algorithm

Incomplete information

Incomplete information

T	S	D	A
Admin Asst	60 K	Corporate	$4007^{\text {th }}$ Ave

Incomplete information

T	S	D	A
Admin Asst	60 K	Corporate	$4007^{\text {th }}$ Ave
CEO	\perp	Corporate	$4007^{\text {th }}$ Ave

Partial Compact Skeletons

- For data graphs with incomplete information, we allow partial overlays
- Results in nulls in relation
- If we can use consistent partial overlays to cover every node and edge of the graph, we have a partially perfect compact skeleton (PPCS)

Tuple subsumption

- Tuple \boldsymbol{t} subsumes tuple u if t and u agree on every component of u that is not null

$$
\begin{array}{llll}
& T & S & D
\end{array} A
$$

Noisy Data Graphs

- Real-life websites are noisy
- False positives e.g., MS = degree, state or Microsoft?
- Non-skeleton links e.g., featured products

Data graph for a retail website

C: Category
I: Item
P: Price
A: Availability

For simplicity: assume all nodes have a label

Coverage of a skeleton

Coverage of a skeleton

Coverage of a skeleton

Skeletons for Noisy Data Graphs

- Problem:
- Find skeleton K with optimal coverage, called the best-fit skeleton (BFS)
- NP-complete

Greedy Heuristic for BFS

Greedy Heuristic for BFS

Label	Parent	Count
P	I	3
A	I	3
	C	1
I	C	4
	R	1
C	R	1
R O		
C ${ }^{\circ}$		
$\begin{aligned} & \mathrm{I} \\ & \mathrm{O} \\ & \mathrm{P} \\ & \mathrm{~A} \end{aligned}$		

Label	Parent	Count
D	C	4
\mathbf{C}	\mathbf{A}	2
	B	1
\mathbf{A}	R	1
\mathbf{B}	\mathbf{R}	1

Greedy skeleton

Greedy skeleton
Coverage $=9$

Greedy skeleton
Coverage $=9$

Optimal skeleton
Coverage $=15$

Weighted Greedy Heuristic

- Simple Greedy heuristic uses parent counts
- "Memory-less"
- Weighted Greedy heuristic takes into account past selections to improve simple greedy selection
- Computes "benefit" of each decision at every stage

Weighted Greedy

Greedy skeleton
Coverage = 9

Weighted Greedy benefit $(\mathrm{A} \rightarrow \mathrm{C})=4$

Greedy skeleton Coverage $=9$

Weighted Greedy benefit $(\mathrm{A} \rightarrow \mathrm{C})=4$ benefit $(\mathrm{B} \rightarrow \mathrm{C})=10$

Greedy skeleton Coverage $=9$

Weighted Greedy

Greedy skeleton
Coverage $=9$

Greedy skeleton Coverage $=9$

Weighted greedy skeleton Coverage $=15$

Summary

Relation
\uparrow
Compact Skeleton
I
Data Graph t

Website

