CS345

Compact Skeletons

Compact Skeletons

- Assume tuples components are scattered over website
- We have a tagger that can tag all tuple components on website
 - Assume no noise for now
- Reconstruct relation

Compact Skeletons

Relation Skeleton Data Graph Website

T	S	D	A
Programmer	100K	R &D	1200 Jose Blvd
CTO	150K	R & D	1200 Jose Blvd
Admin Asst	60K	Corporate	400 7 th Ave
CEO	(null)	Corporate	400 7 th Ave

T	S	D	A
Programmer	100K	R &D	1200 Jose Blvd
СТО	150K	R & D	1200 Jose Blvd
Admin Asst	60K	Corporate	1200 Jose Blvd
CEO	(null)	Corporate	1200 Jose Blvd

Skeletons

- Labeled trees
- Transformation from data graphs to relations

T S D A

Programmer 100K R &D 1200 Jose Blvd

T	S	D	A
Programmer	100K	R &D	1200 Jose Blvd
CTO	150K	R &D	1200 Jose Blvd

Programmer 100K CTO 150K

T S D A

Programmer 150K R &D 1200 Jose Blvd

T	S	D	A
Program	mer 150K	R &D	1200 Jose Blvd
CTO	100K	R & D	1200 Jose Blvd

Inconsistent Overlays

Inconsistent Overlays

Compact Skeletons

- A skeleton is compact if all overlays are consistent
- Perfect if each node and edge of data graph is covered by at least one overlay
- Given a data graph G, does G have a Perfect Compact Skeleton (PCS)?
 - Not always
 - But if it exists it is unique

Work bottom-up:

Compute node signatures

Place nodes in equivalence classes based on signature

Construct skeleton from equivalence classes

PCS Algorithm

Incomplete information

Incomplete information

Incomplete information

T	S	D	$\underline{\hspace{1cm}}$
Admin Asst	60K	Corporate	400 7th Ave
CEO		Corporate	400 7th Ave

Partial Compact Skeletons

- For data graphs with incomplete information, we allow partial overlays
 - Results in nulls in relation
- If we can use consistent partial overlays to cover every node and edge of the graph, we have a partially perfect compact skeleton (PPCS)

Tuple subsumption

 Tuple t subsumes tuple u if t and u agree on every component of u that is not null

$$t \longrightarrow t_1 \quad S \quad D \quad A$$

$$t \longrightarrow t_1 \quad s_1 \quad \bot \quad a_1$$

$$u \longrightarrow t_1 \quad \bot \quad \bot \quad a_1$$

Noisy Data Graphs

- Real-life websites are noisy
 - False positives e.g., MS = degree, state or Microsoft?
 - Non-skeleton links e.g., featured products

Data graph for a retail website

For simplicity: assume all nodes have a label

Coverage of a skeleton

Coverage of a skeleton

Coverage of a skeleton

Skeletons for Noisy Data Graphs

- Problem:
 - Find skeleton K with optimal coverage, called the best-fit skeleton (BFS)
- NP-complete

Greedy Heuristic for BFS

Greedy Heuristic for BFS

Label	Parent	Count
P		3
Α	I	3
	С	1
1	С	4
	R	1
С	R	1

Label	Parent	Count
D	С	4
С	Α	2
	В	1
Α	R	1
В	R	1

Greedy skeleton

Greedy skeleton Coverage = 9

Greedy skeleton Coverage = 9

Optimal skeleton Coverage = 15

Weighted Greedy Heuristic

- Simple Greedy heuristic uses parent counts
 - "Memory-less"
- Weighted Greedy heuristic takes into account past selections to improve simple greedy selection
 - Computes "benefit" of each decision at every stage

Weighted Greedy

Weighted Greedy

$$benefit(A \rightarrow C) = 4$$

Greedy skeleton Coverage = 9

Weighted Greedy

benefit(
$$A \rightarrow C$$
) = 4
benefit($B \rightarrow C$) = 10

Weighted Greedy

Greedy skeleton Coverage = 9

Weighted greedy skeleton Coverage = 15

Summary

Relation Compact Skeleton Data Graph Website