
Chapter 9

Recommendation Systems

There is an extensive class of Web applications that involve predicting user
responses to options. Such a facility is called a recommendation system. We
shall begin this chapter with a survey of the most important examples of these
systems. However, to bring the problem into focus, two good examples of
recommendation systems are:

1. Offering news articles to on-line newspaper readers, based on a prediction
of reader interests.

2. Offering customers of an on-line retailer suggestions about what they
might like to buy, based on their past history of purchases and/or product
searches.

Recommendation systems use a number of different technologies. We can
classify these systems into two broad groups.

• Content-based systems examine properties of the items recommended. For
instance, if a Netflix user has watched many cowboy movies, then recom-
mend a movie classified in the database as having the “cowboy” genre.

• Collaborative filtering systems recommend items based on similarity mea-
sures between users and/or items. The items recommended to a user are
those preferred by similar users. This sort of recommendation system can
use the groundwork laid in Chapter 3 on similarity search and Chapter 7
on clustering. However, these technologies by themselves are not suffi-
cient, and there are some new algorithms that have proven effective for
recommendation systems.

9.1 A Model for Recommendation Systems

In this section we introduce a model for recommendation systems, based on
a utility matrix of preferences. We introduce the concept of a “long-tail,”

319

320 CHAPTER 9. RECOMMENDATION SYSTEMS

which explains the advantage of on-line vendors over conventional, brick-and-
mortar vendors. We then briefly survey the sorts of applications in which
recommendation systems have proved useful.

9.1.1 The Utility Matrix

In a recommendation-system application there are two classes of entities, which
we shall refer to as users and items. Users have preferences for certain items,
and these preferences must be teased out of the data. The data itself is repre-
sented as a utility matrix, giving for each user-item pair, a value that represents
what is known about the degree of preference of that user for that item. Values
come from an ordered set, e.g., integers 1–5 representing the number of stars
that the user gave as a rating for that item. We assume that the matrix is
sparse, meaning that most entries are “unknown.” An unknown rating implies
that we have no explicit information about the user’s preference for the item.

Example 9.1 : In Fig. 9.1 we see an example utility matrix, representing users’
ratings of movies on a 1–5 scale, with 5 the highest rating. Blanks represent
the situation where the user has not rated the movie. The movie names are
HP1, HP2, and HP3 for Harry Potter I, II, and III, TW for Twilight, and SW1,
SW2, and SW3 for Star Wars episodes 1, 2, and 3. The users are represented
by capital letters A through D.

HP1 HP2 HP3 TW SW1 SW2 SW3
A 4 5 1
B 5 5 4
C 2 4 5
D 3 3

Figure 9.1: A utility matrix representing ratings of movies on a 1–5 scale

Notice that most user-movie pairs have blanks, meaning the user has not
rated the movie. In practice, the matrix would be even sparser, with the typical
user rating only a tiny fraction of all available movies. ✷

The goal of a recommendation system is to predict the blanks in the utility
matrix. For example, would user A like SW2? There is little evidence from
the tiny matrix in Fig. 9.1. We might design our recommendation system to
take into account properties of movies, such as their producer, director, stars,
or even the similarity of their names. If so, we might then note the similarity
between SW1 and SW2, and then conclude that since A did not like SW1, they
were unlikely to enjoy SW2 either. Alternatively, with much more data, we
might observe that the people who rated both SW1 and SW2 tended to give
them similar ratings. Thus, we could conclude that A would also give SW2 a
low rating, similar to A’s rating of SW1.

9.1. A MODEL FOR RECOMMENDATION SYSTEMS 321

We should also be aware of a slightly different goal that makes sense in many
applications. It is not necessary to predict every blank entry in a utility matrix.
Rather, it is only necessary to discover some entries in each row that are likely
to be high. In most applications, the recommendation system does not offer
users a ranking of all items, but rather suggests a few that the user should value
highly. It may not even be necessary to find all items with the highest expected
ratings, but only to find a large subset of those with the highest ratings.

9.1.2 The Long Tail

Before discussing the principal applications of recommendation systems, let us
ponder the long tail phenomenon that makes recommendation systems neces-
sary. Physical delivery systems are characterized by a scarcity of resources.
Brick-and-mortar stores have limited shelf space, and can show the customer
only a small fraction of all the choices that exist. On the other hand, on-line
stores can make anything that exists available to the customer. Thus, a physical
bookstore may have several thousand books on its shelves, but Amazon offers
millions of books. A physical newspaper can print several dozen articles per
day, while on-line news services offer thousands per day.

Recommendation in the physical world is fairly simple. First, it is not
possible to tailor the store to each individual customer. Thus, the choice of
what is made available is governed only by the aggregate numbers. Typically, a
bookstore will display only the books that are most popular, and a newspaper
will print only the articles it believes the most people will be interested in.
In the first case, sales figures govern the choices, in the second case, editorial
judgement serves.

The distinction between the physical and on-line worlds has been called
the long tail phenomenon, and it is suggested in Fig. 9.2. The vertical axis
represents popularity (the number of times an item is chosen). The items are
ordered on the horizontal axis according to their popularity. Physical institu-
tions provide only the most popular items to the left of the vertical line, while
the corresponding on-line institutions provide the entire range of items: the tail
as well as the popular items.

The long-tail phenomenon forces on-line institutions to recommend items
to individual users. It is not possible to present all available items to the user,
the way physical institutions can. Neither can we expect users to have heard
of each of the items they might like.

9.1.3 Applications of Recommendation Systems

We have mentioned several important applications of recommendation systems,
but here we shall consolidate the list in a single place.

1. Product Recommendations : Perhaps the most important use of recom-
mendation systems is at on-line retailers. We have noted how Amazon
or similar on-line vendors strive to present each returning user with some

322 CHAPTER 9. RECOMMENDATION SYSTEMS

The Long Tail

Figure 9.2: The long tail: physical institutions can only provide what is popular,
while on-line institutions can make everything available

suggestions of products that they might like to buy. These suggestions are
not random, but are based on the purchasing decisions made by similar
customers or on other techniques we shall discuss in this chapter.

2. Movie Recommendations : Netflix offers its customers recommendations
of movies they might like. These recommendations are based on ratings
provided by users, much like the ratings suggested in the example utility
matrix of Fig. 9.1. The importance of predicting ratings accurately is
so high, that Netflix offered a prize of one million dollars for the first
algorithm that could beat its own recommendation system by 10%.1 The
prize was finally won in 2009, by a team of researchers called “Bellkor’s
Pragmatic Chaos,” after over three years of competition.

3. News Articles : News services have attempted to identify articles of in-
terest to readers, based on the articles that they have read in the past.
The similarity might be based on the similarity of important words in the
documents, or on the articles that are read by people with similar reading
tastes. The same principles apply to recommending blogs from among
the millions of blogs available, videos on YouTube, or other sites where
content is provided regularly.

1To be exact, the algorithm had to have a root-mean-square error (RMSE) that was 10%
less than the RMSE of the Netflix algorithm on a test set taken from actual ratings of Netflix
users. To develop an algorithm, contestants were given a training set of data, also taken from
actual Netflix data.

9.1. A MODEL FOR RECOMMENDATION SYSTEMS 323

Into Thin Air and Touching the Void

An extreme example of how the long tail, together with a well designed
recommendation system can influence events is the story told by Chris An-
derson about a book called Touching the Void. This mountain-climbing
book was not a big seller in its day, but many years after it was pub-
lished, another book on the same topic, called Into Thin Air was pub-
lished. Amazon’s recommendation system noticed a few people who
bought both books, and started recommending Touching the Void to peo-
ple who bought, or were considering, Into Thin Air. Had there been no
on-line bookseller, Touching the Voidmight never have been seen by poten-
tial buyers, but in the on-line world, Touching the Void eventually became
very popular in its own right, in fact, more so than Into Thin Air.

9.1.4 Populating the Utility Matrix

Without a utility matrix, it is almost impossible to recommend items. However,
acquiring data from which to build a utility matrix is often difficult. There are
two general approaches to discovering the value users place on items.

1. We can ask users to rate items. Movie ratings are generally obtained this
way, and some on-line stores try to obtain ratings from their purchasers.
Sites providing content, such as some news sites or YouTube also ask users
to rate items. This approach is limited in its effectiveness, since generally
users are unwilling to provide responses, and the information from those
who do may be biased by the very fact that it comes from people willing
to provide ratings.

2. We can make inferences from users’ behavior. Most obviously, if a user
buys a product at Amazon, watches a movie on YouTube, or reads a news
article, then the user can be said to “like” this item. Note that this sort
of rating system really has only one value: 1 means that the user likes
the item. Often, we find a utility matrix with this kind of data shown
with 0’s rather than blanks where the user has not purchased or viewed
the item. However, in this case 0 is not a lower rating than 1; it is no
rating at all. More generally, one can infer interest from behavior other
than purchasing. For example, if an Amazon customer views information
about an item, we can infer that they are interested in the item, even if
they don’t buy it.

324 CHAPTER 9. RECOMMENDATION SYSTEMS

9.2 Content-Based Recommendations

As we mentioned at the beginning of the chapter, there are two basic architec-
tures for a recommendation system:

1. Content-Based systems focus on properties of items. Similarity of items
is determined by measuring the similarity in their properties.

2. Collaborative-Filtering systems focus on the relationship between users
and items. Similarity of items is determined by the similarity of the
ratings of those items by the users who have rated both items.

In this section, we focus on content-based recommendation systems. The next
section will cover collaborative filtering.

9.2.1 Item Profiles

In a content-based system, we must construct for each item a profile, which is
a record or collection of records representing important characteristics of that
item. In simple cases, the profile consists of some characteristics of the item
that are easily discovered. For example, consider the features of a movie that
might be relevant to a recommendation system.

1. The set of actors of the movie. Some viewers prefer movies with their
favorite actors.

2. The director. Some viewers have a preference for the work of certain
directors.

3. The year in which the movie was made. Some viewers prefer old movies;
others watch only the latest releases.

4. The genre or general type of movie. Some viewers like only comedies,
others dramas or romances.

There are many other features of movies that could be used as well. Except
for the last, genre, the information is readily available from descriptions of
movies. Genre is a vaguer concept. However, movie reviews generally assign
a genre from a set of commonly used terms. For example the Internet Movie

Database (IMDB) assigns a genre or genres to every movie. We shall discuss
mechanical construction of genres in Section 9.3.3.

Many other classes of items also allow us to obtain features from available
data, even if that data must at some point be entered by hand. For instance,
products often have descriptions written by the manufacturer, giving features
relevant to that class of product (e.g., the screen size and cabinet color for a
TV). Books have descriptions similar to those for movies, so we can obtain
features such as author, year of publication, and genre. Music products such
as CD’s and MP3 downloads have available features such as artist, composer,
and genre.

9.2. CONTENT-BASED RECOMMENDATIONS 325

9.2.2 Discovering Features of Documents

There are other classes of items where it is not immediately apparent what the
values of features should be. We shall consider two of them: document collec-
tions and images. Documents present special problems, and we shall discuss
the technology for extracting features from documents in this section. Images
will be discussed in Section 9.2.3 as an important example where user-supplied
features have some hope of success.

There are many kinds of documents for which a recommendation system can
be useful. For example, there are many news articles published each day, and
we cannot read all of them. A recommendation system can suggest articles on
topics a user is interested in, but how can we distinguish among topics? Web
pages are also a collection of documents. Can we suggest pages a user might
want to see? Likewise, blogs could be recommended to interested users, if we
could classify blogs by topics.

Unfortunately, these classes of documents do not tend to have readily avail-
able information giving features. A substitute that has been useful in practice is
the identification of words that characterize the topic of a document. How we do
the identification was outlined in Section 1.3.1. First, eliminate stop words –
the several hundred most common words, which tend to say little about the
topic of a document. For the remaining words, compute the TF.IDF score for
each word in the document. The ones with the highest scores are the words
that characterize the document.

We may then take as the features of a document the n words with the highest
TF.IDF scores. It is possible to pick n to be the same for all documents, or to
let n be a fixed percentage of the words in the document. We could also choose
to make all words whose TF.IDF scores are above a given threshold to be a
part of the feature set.

Now, documents are represented by sets of words. Intuitively, we expect
these words to express the subjects or main ideas of the document. For example,
in a news article, we would expect the words with the highest TF.IDF score to
include the names of people discussed in the article, unusual properties of the
event described, and the location of the event. To measure the similarity of two
documents, there are several natural distance measures we can use:

1. We could use the Jaccard distance between the sets of words (recall Sec-
tion 3.5.3).

2. We could use the cosine distance (recall Section 3.5.4) between the sets,
treated as vectors.

To compute the cosine distance in option (2), think of the sets of high-
TF.IDF words as a vector, with one component for each possible word. The
vector has 1 if the word is in the set and 0 if not. Since between two docu-
ments there are only a finite number of words among their two sets, the infinite
dimensionality of the vectors is unimportant. Almost all components are 0 in

326 CHAPTER 9. RECOMMENDATION SYSTEMS

Two Kinds of Document Similarity

Recall that in Section 3.4 we gave a method for finding documents that
were “similar,” using shingling, minhashing, and LSH. There, the notion
of similarity was lexical – documents are similar if they contain large,
identical sequences of characters. For recommendation systems, the notion
of similarity is different. We are interested only in the occurrences of many
important words in both documents, even if there is little lexical similarity
between the documents. However, the methodology for finding similar
documents remains almost the same. Once we have a distance measure,
either Jaccard or cosine, we can use minhashing (for Jaccard) or random
hyperplanes (for cosine distance; see Section 3.7.2) feeding data to an LSH
algorithm to find the pairs of documents that are similar in the sense of
sharing many common keywords.

both, and 0’s do not impact the value of the dot product. To be precise, the dot
product is the size of the intersection of the two sets of words, and the lengths
of the vectors are the square roots of the numbers of words in each set. That
calculation lets us compute the cosine of the angle between the vectors as the
dot product divided by the product of the vector lengths.

9.2.3 Obtaining Item Features From Tags

Let us consider a database of images as an example of a way that features have
been obtained for items. The problem with images is that their data, typically
an array of pixels, does not tell us anything useful about their features. We can
calculate simple properties of pixels, such as the average amount of red in the
picture, but few users are looking for red pictures or especially like red pictures.

There have been a number of attempts to obtain information about features
of items by inviting users to tag the items by entering words or phrases that
describe the item. Thus, one picture with a lot of red might be tagged “Tianan-
men Square,” while another is tagged “sunset at Malibu.” The distinction is
not something that could be discovered by existing image-analysis programs.

Almost any kind of data can have its features described by tags. One of
the earliest attempts to tag massive amounts of data was the site del.icio.us,
later bought by Yahoo!, which invited users to tag Web pages. The goal of this
tagging was to make a new method of search available, where users entered a
set of tags as their search query, and the system retrieved the Web pages that
had been tagged that way. However, it is also possible to use the tags as a
recommendation system. If it is observed that a user retrieves or bookmarks
many pages with a certain set of tags, then we can recommend other pages with
the same tags.

The problem with tagging as an approach to feature discovery is that the

9.2. CONTENT-BASED RECOMMENDATIONS 327

Tags from Computer Games

An interesting direction for encouraging tagging is the “games” approach
pioneered by Luis von Ahn. He enabled two players to collaborate on the
tag for an image. In rounds, they would suggest a tag, and the tags would
be exchanged. If they agreed, then they “won,” and if not, they would
play another round with the same image, trying to agree simultaneously
on a tag. While an innovative direction to try, it is questionable whether
sufficient public interest can be generated to produce enough free work to
satisfy the needs for tagged data.

process only works if users are willing to take the trouble to create the tags, and
there are enough tags that occasional erroneous ones will not bias the system
too much.

9.2.4 Representing Item Profiles

Our ultimate goal for content-based recommendation is to create both an item
profile consisting of feature-value pairs and a user profile summarizing the pref-
erences of the user, based of their row of the utility matrix. In Section 9.2.2
we suggested how an item profile could be constructed. We imagined a vector
of 0’s and 1’s, where a 1 represented the occurrence of a high-TF.IDF word
in the document. Since features for documents were all words, it was easy to
represent profiles this way.

We shall try to generalize this vector approach to all sorts of features. It is
easy to do so for features that are sets of discrete values. For example, if one
feature of movies is the set of actors, then imagine that there is a component
for each actor, with 1 if the actor is in the movie, and 0 if not. Likewise, we
can have a component for each possible director, and each possible genre. All
these features can be represented using only 0’s and 1’s.

There is another class of features that is not readily represented by Boolean
vectors: those features that are numerical. For instance, we might take the
average rating for movies to be a feature,2 and this average is a real number.
It does not make sense to have one component for each of the possible average
ratings, and doing so would cause us to lose the structure implicit in numbers.
That is, two ratings that are close but not identical should be considered more
similar than widely differing ratings. Likewise, numerical features of products,
such as screen size or disk capacity for PC’s, should be considered similar if
their values do not differ greatly.

Numerical features should be represented by single components of vectors
representing items. These components hold the exact value of that feature.

2The rating is not a very reliable feature, but it will serve as an example.

328 CHAPTER 9. RECOMMENDATION SYSTEMS

There is no harm if some components of the vectors are Boolean and others are
real-valued or integer-valued. We can still compute the cosine distance between
vectors, although if we do so, we should give some thought to the appropri-
ate scaling of the nonBoolean components, so that they neither dominate the
calculation nor are they irrelevant.

Example 9.2 : Suppose the only features of movies are the set of actors and
the average rating. Consider two movies with five actors each. Two of the
actors are in both movies. Also, one movie has an average rating of 3 and the
other an average of 4. The vectors look something like

0 1 1 0 1 1 0 1 3α
1 1 0 1 0 1 1 0 4α

However, there are in principle an infinite number of additional components,
each with 0’s for both vectors, representing all the possible actors that neither
movie has. Since cosine distance of vectors is not affected by components in
which both vectors have 0, we need not worry about the effect of actors that
are in neither movie.

The last component shown represents the average rating. We have shown
it as having an unknown scaling factor α. In terms of α, we can compute the
cosine of the angle between the vectors. The dot product is 2 + 12α2, and the
lengths of the vectors are

√
5 + 9α2 and

√
5 + 16α2. Thus, the cosine of the

angle between the vectors is

2 + 12α2

√
25 + 125α2 + 144α4

If we choose α = 1, that is, we take the average ratings as they are, then
the value of the above expression is 0.816. If we use α = 2, that is, we double
the ratings, then the cosine is 0.940. That is, the vectors appear much closer
in direction than if we use α = 1. Likewise, if we use α = 1/2, then the cosine
is 0.619, making the vectors look quite different. We cannot tell which value of
α is “right,” but we see that the choice of scaling factor for numerical features
affects our decision about how similar items are. ✷

9.2.5 User Profiles

We not only need to create vectors describing items; we need to create vectors
with the same components that describe the user’s preferences. We have the
utility matrix representing the connection between users and items. Recall
the nonblank matrix entries could be just 1’s representing user purchases or a
similar connection, or they could be arbitrary numbers representing a rating or
degree of affection that the user has for the item.

With this information, the best estimate we can make regarding which items
the user likes is some aggregation of the profiles of those items. If the utility
matrix has only 1’s, then the natural aggregate is the average of the components

9.2. CONTENT-BASED RECOMMENDATIONS 329

of the vectors representing the item profiles for the items in which the utility
matrix has 1 for that user.

Example 9.3 : Suppose items are movies, represented by Boolean profiles with
components corresponding to actors. Also, the utility matrix has a 1 if the user
has seen the movie and is blank otherwise. If 20% of the movies that user U
likes have Julia Roberts as one of the actors, then the user profile for U will
have 0.2 in the component for Julia Roberts. ✷

If the utility matrix is not Boolean, e.g., ratings 1–5, then we can weight
the vectors representing the profiles of items by the utility value. It makes
sense to normalize the utilities by subtracting the average value for a user.
That way, we get negative weights for items with a below-average rating, and
positive weights for items with above-average ratings. That effect will prove
useful when we discuss in Section 9.2.6 how to find items that a user should
like.

Example 9.4 : Consider the same movie information as in Example 9.3, but
now suppose the utility matrix has nonblank entries that are ratings in the 1–5
range. Suppose user U gives an average rating of 3. There are three movies
with Julia Roberts as an actor, and those movies got ratings of 3, 4, and 5.
Then in the user profile of U , the component for Julia Roberts will have value
that is the average of 3− 3, 4− 3, and 5− 3, that is, a value of 1.

On the other hand, user V gives an average rating of 4, and has also rated
three movies with Julia Roberts (it doesn’t matter whether or not they are the
same three movies U rated). User V gives these three movies ratings of 2, 3,
and 5. The user profile for V has, in the component for Julia Roberts, the
average of 2− 4, 3− 4, and 5− 4, that is, the value −2/3. ✷

9.2.6 Recommending Items to Users Based on Content

With profile vectors for both users and items, we can estimate the degree to
which a user would prefer an item by computing the cosine distance between
the user’s and item’s vectors. As in Example 9.2, we may wish to scale var-
ious components whose values are not Boolean. The random-hyperplane and
locality-sensitive-hashing techniques can be used to place (just) item profiles
in buckets. In that way, given a user to whom we want to recommend some
items, we can apply the same two techniques – random hyperplanes and LSH –
to determine in which buckets we must look for items that might have a small
cosine distance from the user.

Example 9.5 : Consider first the data of Example 9.3. The user’s profile will
have components for actors proportional to the likelihood that the actor will
appear in a movie the user likes. Thus, the highest recommendations (lowest
cosine distance) belong to the movies with lots of actors that appear in many

330 CHAPTER 9. RECOMMENDATION SYSTEMS

of the movies the user likes. As long as actors are the only information we have
about features of movies, that is probably the best we can do.3

Now, consider Example 9.4. There, we observed that the vector for a user
will have positive numbers for actors that tend to appear in movies the user
likes and negative numbers for actors that tend to appear in movies the user
doesn’t like. Consider a movie with many actors the user likes, and only a few
or none that the user doesn’t like. The cosine of the angle between the user’s
and movie’s vectors will be a large positive fraction. That implies an angle close
to 0, and therefore a small cosine distance between the vectors.

Next, consider a movie with about as many actors that the user likes as those
the user doesn’t like. In this situation, the cosine of the angle between the user
and movie is around 0, and therefore the angle between the two vectors is around
90 degrees. Finally, consider a movie with mostly actors the user doesn’t like.
In that case, the cosine will be a large negative fraction, and the angle between
the two vectors will be close to 180 degrees – the maximum possible cosine
distance. ✷

9.2.7 Classification Algorithms

A completely different approach to a recommendation system using item profiles
and utility matrices is to treat the problem as one of machine learning. Regard
the given data as a training set, and for each user, build a classifier that predicts
the rating of all items. There are a great number of different classifiers, and it
is not our purpose to teach this subject here. However, you should be aware
of the option of developing a classifier for recommendation, so we shall discuss
one common classifier – decision trees – briefly.

A decision tree is a collection of nodes, arranged as a binary tree. The
leaves render decisions; in our case, the decision would be “likes” or “doesn’t
like.” Each interior node is a condition on the objects being classified; in our
case the condition would be a predicate involving one or more features of an
item.

To classify an item, we start at the root, and apply the predicate at the root
to the item. If the predicate is true, go to the left child, and if it is false, go to
the right child. Then repeat the same process at the node visited, until a leaf
is reached. That leaf classifies the item as liked or not.

Construction of a decision tree requires selection of a predicate for each
interior node. There are many ways of picking the best predicate, but they all
try to arrange that one of the children gets all or most of the positive examples
in the training set (i.e, the items that the given user likes, in our case) and the
other child gets all or most of the negative examples (the items this user does
not like).

3Note that the fact all user-vector components will be small fractions does not affect the
recommendation, since the cosine calculation involves dividing by the length of each vector.
That is, user vectors will tend to be much shorter than movie vectors, but only the direction
of vectors matters.

9.2. CONTENT-BASED RECOMMENDATIONS 331

Once we have selected a predicate for a node N , we divide the items into
the two groups: those that satisfy the predicate and those that do not. For
each group, we again find the predicate that best separates the positive and
negative examples in that group. These predicates are assigned to the children
of N . This process of dividing the examples and building children can proceed
to any number of levels. We can stop, and create a leaf, if the group of items
for a node is homogeneous; i.e., they are all positive or all negative examples.

However, we may wish to stop and create a leaf with the majority decision
for a group, even if the group contains both positive and negative examples.
The reason is that the statistical significance of a small group may not be high
enough to rely on. For that reason a variant strategy is to create an ensemble of
decision trees, each using different predicates, but allow the trees to be deeper
than what the available data justifies. Such trees are called overfitted. To
classify an item, apply all the trees in the ensemble, and let them vote on the
outcome. We shall not consider this option here, but give a simple hypothetical
example of a decision tree.

Example 9.6 : Suppose our items are news articles, and features are the high-
TF.IDF words (keywords) in those documents. Further suppose there is a user
U who likes articles about baseball, except articles about the New York Yankees.
The row of the utility matrix for U has 1 if U has read the article and is blank if
not. We shall take the 1’s as “like” and the blanks as “doesn’t like.” Predicates
will be Boolean expressions of keywords.

Since U generally likes baseball, we might find that the best predicate for
the root is “homerun” OR (“batter” AND “pitcher”). Items that satisfy the
predicate will tend to be positive examples (articles with 1 in the row for U in
the utility matrix), and items that fail to satisfy the predicate will tend to be
negative examples (blanks in the utility-matrix row for U). Figure 9.3 shows
the root as well as the rest of the decision tree.

Suppose that the group of articles that do not satisfy the predicate includes
sufficiently few positive examples that we can conclude all of these items are in
the “don’t-like” class. We may then put a leaf with decision “don’t like” as the
right child of the root. However, the articles that satisfy the predicate includes
a number of articles that user U doesn’t like; these are the articles that mention
the Yankees. Thus, at the left child of the root, we build another predicate.
We might find that the predicate “Yankees” OR “Jeter” OR “Teixeira” is the
best possible indicator of an article about baseball and about the Yankees.
Thus, we see in Fig. 9.3 the left child of the root, which applies this predicate.
Both children of this node are leaves, since we may suppose that the items
satisfying this predicate are predominantly negative and those not satisfying it
are predominantly positive. ✷

Unfortunately, classifiers of all types tend to take a long time to construct.
For instance, if we wish to use decision trees, we need one tree per user. Con-
structing a tree not only requires that we look at all the item profiles, but we

332 CHAPTER 9. RECOMMENDATION SYSTEMS

("batter" AND "pitcher")
"homerun" OR

"Yankees" OR
"Jeter" OR "Teixeira"

Doesn’t
Like

Doesn’t
Like

Likes

Figure 9.3: A decision tree

have to consider many different predicates, which could involve complex com-
binations of features. Thus, this approach tends to be used only for relatively
small problem sizes.

9.2.8 Exercises for Section 9.2

Exercise 9.2.1 : Three computers, A, B, and C, have the numerical features
listed below:

Feature A B C
Processor Speed 3.06 2.68 2.92
Disk Size 500 320 640
Main-Memory Size 6 4 6

We may imagine these values as defining a vector for each computer; for in-
stance, A’s vector is [3.06, 500, 6]. We can compute the cosine distance between
any two of the vectors, but if we do not scale the components, then the disk
size will dominate and make differences in the other components essentially in-
visible. Let us use 1 as the scale factor for processor speed, α for the disk size,
and β for the main memory size.

(a) In terms of α and β, compute the cosines of the angles between the vectors
for each pair of the three computers.

(b) What are the angles between the vectors if α = β = 1?

(c) What are the angles between the vectors if α = 0.01 and β = 0.5?

9.3. COLLABORATIVE FILTERING 333

! (d) One fair way of selecting scale factors is to make each inversely propor-
tional to the average value in its component. What would be the values
of α and β, and what would be the angles between the vectors?

Exercise 9.2.2 : An alternative way of scaling components of a vector is to
begin by normalizing the vectors. That is, compute the average for each com-
ponent and subtract it from that component’s value in each of the vectors.

(a) Normalize the vectors for the three computers described in Exercise 9.2.1.

!! (b) This question does not require difficult calculation, but it requires some
serious thought about what angles between vectors mean. When all com-
ponents are nonnegative, as they are in the data of Exercise 9.2.1, no
vectors can have an angle greater than 90 degrees. However, when we
normalize vectors, we can (and must) get some negative components, so
the angles can now be anything, that is, 0 to 180 degrees. Moreover,
averages are now 0 in every component, so the suggestion in part (d) of
Exercise 9.2.1 that we should scale in inverse proportion to the average
makes no sense. Suggest a way of finding an appropriate scale for each
component of normalized vectors. How would you interpret a large or
small angle between normalized vectors? What would the angles be for
the normalized vectors derived from the data in Exercise 9.2.1?

Exercise 9.2.3 : A certain user has rated the three computers of Exercise 9.2.1
as follows: A: 4 stars, B: 2 stars, C: 5 stars.

(a) Normalize the ratings for this user.

(b) Compute a user profile for the user, with components for processor speed,
disk size, and main memory size, based on the data of Exercise 9.2.1.

9.3 Collaborative Filtering

We shall now take up a significantly different approach to recommendation.
Instead of using features of items to determine their similarity, we focus on the
similarity of the user ratings for two items. That is, in place of the item-profile
vector for an item, we use its column in the utility matrix. Further, instead
of contriving a profile vector for users, we represent them by their rows in the
utility matrix. Users are similar if their vectors are close according to some
distance measure such as Jaccard or cosine distance. Recommendation for a
user U is then made by looking at the users that are most similar to U in this
sense, and recommending items that these users like. The process of identifying
similar users and recommending what similar users like is called collaborative

filtering.

334 CHAPTER 9. RECOMMENDATION SYSTEMS

9.3.1 Measuring Similarity

The first question we must deal with is how to measure similarity of users or
items from their rows or columns in the utility matrix. We have reproduced
Fig. 9.1 here as Fig. 9.4. This data is too small to draw any reliable conclusions,
but its small size will make clear some of the pitfalls in picking a distance
measure. Observe specifically the users A and C. They rated two movies in
common, but they appear to have almost diametrically opposite opinions of
these movies. We would expect that a good distance measure would make
them rather far apart. Here are some alternative measures to consider.

HP1 HP2 HP3 TW SW1 SW2 SW3
A 4 5 1
B 5 5 4
C 2 4 5
D 3 3

Figure 9.4: The utility matrix introduced in Fig. 9.1

Jaccard Distance

We could ignore values in the matrix and focus only on the sets of items rated.
If the utility matrix only reflected purchases, this measure would be a good
one to choose. However, when utilities are more detailed ratings, the Jaccard
distance loses important information.

Example 9.7 : A and B have an intersection of size 1 and a union of size 5.
Thus, their Jaccard similarity is 1/5, and their Jaccard distance is 4/5; i.e.,
they are very far apart. In comparison, A and C have a Jaccard similarity of
2/4, so their Jaccard distance is the same, 1/2. Thus, A appears closer to C
than to B. Yet that conclusion seems intuitively wrong. A and C disagree on
the two movies they both watched, while A and B seem both to have liked the
one movie they watched in common. ✷

Cosine Distance

We can treat blanks as a 0 value. This choice is questionable, since it has the
effect of treating the lack of a rating as more similar to disliking the movie than
liking it.

Example 9.8 : The cosine of the angle between A and B is

4× 5
√
42 + 52 + 12

√
52 + 52 + 42

= 0.380

9.3. COLLABORATIVE FILTERING 335

The cosine of the angle between A and C is

5× 2 + 1× 4
√
42 + 52 + 12

√
22 + 42 + 52

= 0.322

Since a larger (positive) cosine implies a smaller angle and therefore a smaller
distance, this measure tells us that A is slightly closer to B than to C. ✷

Rounding the Data

We could try to eliminate the apparent similarity between movies a user rates
highly and those with low scores by rounding the ratings. For instance, we could
consider ratings of 3, 4, and 5 as a “1” and consider ratings 1 and 2 as unrated.
The utility matrix would then look as in Fig. 9.5. Now, the Jaccard distance
between A and B is 3/4, while between A and C it is 1; i.e., C appears further
from A than B does, which is intuitively correct. Applying cosine distance to
Fig. 9.5 allows us to draw the same conclusion.

HP1 HP2 HP3 TW SW1 SW2 SW3
A 1 1
B 1 1 1
C 1 1
D 1 1

Figure 9.5: Utilities of 3, 4, and 5 have been replaced by 1, while ratings of 1
and 2 are omitted

Normalizing Ratings

If we normalize ratings, by subtracting from each rating the average rating
of that user, we turn low ratings into negative numbers and high ratings into
positive numbers. If we then take the cosine distance, we find that users with
opposite views of the movies they viewed in common will have vectors in almost
opposite directions, and can be considered as far apart as possible. However,
users with similar opinions about the movies rated in common will have a
relatively small angle between them.

Example 9.9 : Figure 9.6 shows the matrix of Fig. 9.4 with all ratings nor-
malized. An interesting effect is that D’s ratings have effectively disappeared,
because a 0 is the same as a blank when cosine distance is computed. Note that
D gave only 3’s and did not differentiate among movies, so it is quite possible
that D’s opinions are not worth taking seriously.

Let us compute the cosine of the angle between A and B:

(2/3)× (1/3)
√

(2/3)2 + (5/3)2 + (−7/3)2
√

(1/3)2 + (1/3)2 + (−2/3)2
= 0.092

336 CHAPTER 9. RECOMMENDATION SYSTEMS

HP1 HP2 HP3 TW SW1 SW2 SW3
A 2/3 5/3 −7/3
B 1/3 1/3 −2/3
C −5/3 1/3 4/3
D 0 0

Figure 9.6: The utility matrix introduced in Fig. 9.1

The cosine of the angle between between A and C is

(5/3)× (−5/3) + (−7/3)× (1/3)
√

(2/3)2 + (5/3)2 + (−7/3)2
√

(−5/3)2 + (1/3)2 + (4/3)2
= −0.559

Notice that under this measure, A and C are much further apart than A and
B, and neither pair is very close. Both these observations make intuitive sense,
given that A and C disagree on the two movies they rated in common, while A
and B give similar scores to the one movie they rated in common. ✷

9.3.2 The Duality of Similarity

The utility matrix can be viewed as telling us about users or about items, or
both. It is important to realize that any of the techniques we suggested in
Section 9.3.1 for finding similar users can be used on columns of the utility
matrix to find similar items. There are two ways in which the symmetry is
broken in practice.

1. We can use information about users to recommend items. That is, given
a user, we can find some number of the most similar users, perhaps using
the techniques of Chapter 3. We can base our recommendation on the
decisions made by these similar users, e.g., recommend the items that the
greatest number of them have purchased or rated highly. However, there
is no symmetry. Even if we find pairs of similar items, we need to take
an additional step in order to recommend items to users. This point is
explored further at the end of this subsection.

2. There is a difference in the typical behavior of users and items, as it
pertains to similarity. Intuitively, items tend to be classifiable in simple
terms. For example, music tends to belong to a single genre. It is impossi-
ble, e.g., for a piece of music to be both 60’s rock and 1700’s baroque. On
the other hand, there are individuals who like both 60’s rock and 1700’s
baroque, and who buy examples of both types of music. The consequence
is that it is easier to discover items that are similar because they belong
to the same genre, than it is to detect that two users are similar because
they prefer one genre in common, while each also likes some genres that
the other doesn’t care for.

9.3. COLLABORATIVE FILTERING 337

As we suggested in (1) above, one way of predicting the value of the utility-
matrix entry for user U and item I is to find the n users (for some predetermined
n) most similar to U and average their ratings for item I, counting only those
among the n similar users who have rated I. It is generally better to normalize
the matrix first. That is, for each of the n users subtract their average rating
for items from their rating for i. Average the difference for those users who
have rated I, and then add this average to the average rating that U gives for
all items. This normalization adjusts the estimate in the case that U tends to
give very high or very low ratings, or a large fraction of the similar users who
rated I (of which there may be only a few) are users who tend to rate very high
or very low.

Dually, we can use item similarity to estimate the entry for user U and item
I. Find the m items most similar to I, for some m, and take the average rating,
among the m items, of the ratings that U has given. As for user-user similarity,
we consider only those items among the m that U has rated, and it is probably
wise to normalize item ratings first.

Note that whichever approach to estimating entries in the utility matrix we
use, it is not sufficient to find only one entry. In order to recommend items to
a user U , we need to estimate every entry in the row of the utility matrix for
U , or at least find all or most of the entries in that row that are blank but have
a high estimated value. There is a tradeoff regarding whether we should work
from similar users or similar items.

• If we find similar users, then we only have to do the process once for user
U . From the set of similar users we can estimate all the blanks in the
utility matrix for U . If we work from similar items, we have to compute
similar items for almost all items, before we can estimate the row for U .

• On the other hand, item-item similarity often provides more reliable in-
formation, because of the phenomenon observed above, namely that it is
easier to find items of the same genre than it is to find users that like only
items of a single genre.

Whichever method we choose, we should precompute preferred items for each
user, rather than waiting until we need to make a decision. Since the utility
matrix evolves slowly, it is generally sufficient to compute it infrequently and
assume that it remains fixed between recomputations.

9.3.3 Clustering Users and Items

It is hard to detect similarity among either items or users, because we have
little information about user-item pairs in the sparse utility matrix. In the
perspective of Section 9.3.2, even if two items belong to the same genre, there
are likely to be very few users who bought or rated both. Likewise, even if
two users both like a genre or genres, they may not have bought any items in
common.

338 CHAPTER 9. RECOMMENDATION SYSTEMS

One way of dealing with this pitfall is to cluster items and/or users. Select
any of the distance measures suggested in Section 9.3.1, or any other distance
measure, and use it to perform a clustering of, say, items. Any of the methods
suggested in Chapter 7 can be used. However, we shall see that there may
be little reason to try to cluster into a small number of clusters immediately.
Rather, a hierarchical approach, where we leave many clusters unmerged may
suffice as a first step. For example, we might leave half as many clusters as
there are items.

HP TW SW
A 4 5 1
B 4.67
C 2 4.5
D 3 3

Figure 9.7: Utility matrix for users and clusters of items

Example 9.10 : Figure 9.7 shows what happens to the utility matrix of Fig. 9.4
if we manage to cluster the three Harry-Potter movies into one cluster, denoted
HP, and also cluster the three Star-Wars movies into one cluster SW. ✷

Having clustered items to an extent, we can revise the utility matrix so the
columns represent clusters of items, and the entry for user U and cluster C is
the average rating that U gave to those members of cluster C that U did rate.
Note that U may have rated none of the cluster members, in which case the
entry for U and C is still blank.

We can use this revised utility matrix to cluster users, again using the dis-
tance measure we consider most appropriate. Use a clustering algorithm that
again leaves many clusters, e.g., half as many clusters as there are users. Re-
vise the utility matrix, so the rows correspond to clusters of users, just as the
columns correspond to clusters of items. As for item-clusters, compute the
entry for a user cluster by averaging the ratings of the users in the cluster.

Now, this process can be repeated several times if we like. That is, we can
cluster the item clusters and again merge the columns of the utility matrix that
belong to one cluster. We can then turn to the users again, and cluster the
user clusters. The process can repeat until we have an intuitively reasonable
number of clusters of each kind.

Once we have clustered the users and/or items to the desired extent and
computed the cluster-cluster utility matrix, we can estimate entries in the orig-
inal utility matrix as follows. Suppose we want to predict the entry for user U
and item I:

(a) Find the clusters to which U and I belong, say clusters C and D, respec-
tively.

9.3. COLLABORATIVE FILTERING 339

(b) If the entry in the cluster-cluster utility matrix for C and D is something
other than blank, use this value as the estimated value for the U–I entry
in the original utility matrix.

(c) If the entry for C–D is blank, then use the method outlined in Section 9.3.2
to estimate that entry by considering clusters similar to C or D. Use the
resulting estimate as the estimate for the U -I entry.

9.3.4 Exercises for Section 9.3

a b c d e f g h
A 4 5 5 1 3 2
B 3 4 3 1 2 1
C 2 1 3 4 5 3

Figure 9.8: A utility matrix for exercises

Exercise 9.3.1 : Figure 9.8 is a utility matrix, representing the ratings, on a
1–5 star scale, of eight items, a through h, by three users A, B, and C. Compute
the following from the data of this matrix.

(a) Treating the utility matrix as boolean, compute the Jaccard distance be-
tween each pair of users.

(b) Repeat Part (a), but use the cosine distance.

(c) Treat ratings of 3, 4, and 5 as 1 and 1, 2, and blank as 0. Compute the
Jaccard distance between each pair of users.

(d) Repeat Part (c), but use the cosine distance.

(e) Normalize the matrix by subtracting from each nonblank entry the average
value for its user.

(f) Using the normalized matrix from Part (e), compute the cosine distance
between each pair of users.

Exercise 9.3.2 : In this exercise, we cluster items in the matrix of Fig. 9.8.
Do the following steps.

(a) Cluster the eight items hierarchically into four clusters. The following
method should be used to cluster. Replace all 3’s, 4’s, and 5’s by 1 and
replace 1’s, 2’s, and blanks by 0. use the Jaccard distance to measure
the distance between the resulting column vectors. For clusters of more
than one element, take the distance between clusters to be the minimum
distance between pairs of elements, one from each cluster.

340 CHAPTER 9. RECOMMENDATION SYSTEMS

(b) Then, construct from the original matrix of Fig. 9.8 a new matrix whose
rows correspond to users, as before, and whose columns correspond to
clusters. Compute the entry for a user and cluster of items by averaging
the nonblank entries for that user and all the items in the cluster.

(c) Compute the cosine distance between each pair of users, according to your
matrix from Part (b).

9.4 Dimensionality Reduction

An entirely different approach to estimating the blank entries in the utility
matrix is to conjecture that the utility matrix is actually the product of two
long, thin matrices. This view makes sense if there are a relatively small set
of features of items and users that determine the reaction of most users to
most items. In this section, we sketch one approach to discovering two such
matrices; the approach is called “UV-decomposition,” and it is an instance of
a more general theory called SVD (singular-value decomposition).

9.4.1 UV-Decomposition

Consider movies as a case in point. Most users respond to a small number
of features; they like certain genres, they may have certain famous actors or
actresses that they like, and perhaps there are a few directors with a significant
following. If we start with the utility matrix M , with n rows and m columns
(i.e., there are n users and m items), then we might be able to find a matrix
U with n rows and d columns and a matrix V with d rows and m columns,
such that UV closely approximates M in those entries where M is nonblank.
If so, then we have established that there are d dimensions that allow us to
characterize both users and items closely. We can then use the entry in the
product UV to estimate the corresponding blank entry in utility matrix M .
This process is called UV-decomposition of M .













5 2 4 4 3
3 1 2 4 1
2 3 1 4
2 5 4 3 5
4 4 5 4













=













u11 u12

u21 u22

u31 u32

u41 u42

u51 u52













×

[

v11 v12 v13 v14 v15
v21 v22 v23 v24 v25

]

Figure 9.9: UV-decomposition of matrix M

Example 9.11 : We shall use as a running example a 5-by-5 matrix M with
all but two of its entries known. We wish to decompose M into a 5-by-2 and
2-by-5 matrix, U and V , respectively. The matrices M , U , and V are shown
in Fig. 9.9 with the known entries of M indicated and the matrices U and

9.4. DIMENSIONALITY REDUCTION 341

V shown with their entries as variables to be determined. This example is
essentially the smallest nontrivial case where there are more known entries than
there are entries in U and V combined, and we therefore can expect that the
best decomposition will not yield a product that agrees exactly in the nonblank
entries of M . ✷

9.4.2 Root-Mean-Square Error

While we can pick among several measures of how close the product UV is to
M , the typical choice is the root-mean-square error (RMSE), where we

1. Sum, over all nonblank entries in M the square of the difference between
that entry and the corresponding entry in the product UV .

2. Take the mean (average) of these squares by dividing by the number of
terms in the sum (i.e., the number of nonblank entries in M).

3. Take the square root of the mean.

Minimizing the sum of the squares is the same as minimizing the square root
of the average square, so we generally omit the last two steps in our running
example.













1 1
1 1
1 1
1 1
1 1













×

[

1 1 1 1 1
1 1 1 1 1

]

=













2 2 2 2 2
2 2 2 2 2
2 2 2 2 2
2 2 2 2 2
2 2 2 2 2













Figure 9.10: Matrices U and V with all entries 1

Example 9.12 : Suppose we guess that U and V should each have entries that
are all 1’s, as shown in Fig. 9.10. This is a poor guess, since the product,
consisting of all 2’s, has entries that are much below the average of the entries
in M . Nonetheless, we can compute the RMSE for this U and V ; in fact
the regularity in the entries makes the calculation especially easy to follow.
Consider the first rows of M and UV . We subtract 2 (each entry in UV) from
the entries in the first row of M , to get 3, 0, 2, 2, 1. We square and sum these
to get 18. In the second row, we do the same to get 1,−1, 0, 2,−1, square and
sum to get 7. In the third row, the second column is blank, so that entry is
ignored when computing the RMSE. The differences are 0, 1,−1, 2 and the sum
of squares is 6. For the fourth row, the differences are 0, 3, 2, 1, 3 and the sum
of squares is 23. The fifth row has a blank entry in the last column, so the
differences are 2, 2, 3, 2 and the sum of squares is 21. When we sum the sums
from each of the five rows, we get 18+7+6+23+21 = 75. Generally, we shall

342 CHAPTER 9. RECOMMENDATION SYSTEMS

stop at this point, but if we want to compute the true RMSE, we divide by 23
(the number of nonblank entries in M) and take the square root. In this case
√

75/23 = 1.806 is the RMSE. ✷

9.4.3 Incremental Computation of a UV-Decomposition

Finding the UV-decomposition with the least RMSE involves starting with
some arbitrarily chosen U and V , and repeatedly adjusting U and V to make
the RMSE smaller. We shall consider only adjustments to a single element
of U or V , although in principle, one could make more complex adjustments.
Whatever adjustments we allow, in a typical example there will be many lo-

cal minima – matrices U and V such that no allowable adjustment reduces
the RMSE. Unfortunately, only one of these local minima will be the global

minimum – the matrices U and V that produce the least possible RMSE. To
increase our chances of finding the global minimum, we need to pick many dif-
ferent starting points, that is, different choices of the initial matrices U and V .
However, there is never a guarantee that our best local minimum will be the
global minimum.

We shall start with the U and V of Fig. 9.10, where all entries are 1, and do
a few adjustments to some of the entries, finding the values of those entries that
give the largest possible improvement to the RMSE. From these examples, the
general calculation should become obvious, but we shall follow the examples
by the formula for minimizing the RMSE by changing a single entry. In what
follows, we shall refer to entries of U and V by their variable names u11, and
so on, as given in Fig. 9.9.

Example 9.13 : Suppose we start with U and V as in Fig. 9.10, and we decide
to alter u11 to reduce the RMSE as much as possible. Let the value of u11 be
x. Then the new U and V can be expressed as in Fig. 9.11.













x 1
1 1
1 1
1 1
1 1













×

[

1 1 1 1 1
1 1 1 1 1

]

=













x+ 1 x+ 1 x+ 1 x+ 1 x+ 1
2 2 2 2 2
2 2 2 2 2
2 2 2 2 2
2 2 2 2 2













Figure 9.11: Making u11 a variable

Notice that the only entries of the product that have changed are those in
the first row. Thus, when we compare UV with M , the only change to the
RMSE comes from the first row. The contribution to the sum of squares from
the first row is

(

5− (x+1)
)2

+
(

2− (x+1)
)2

+
(

4− (x+1)
)2

+
(

4− (x+1)
)2

+
(

3− (x+1)
)2

9.4. DIMENSIONALITY REDUCTION 343

This sum simplifies to

(4 − x)2 + (1− x)2 + (3− x)2 + (3− x)2 + (2 − x)2

We want the value of x that minimizes the sum, so we take the derivative and
set that equal to 0, as:

−2×
(

(4− x) + (1− x) + (3− x) + (3− x) + (2− x)
)

= 0

or −2× (13− 5x) = 0, from which it follows that x = 2.6.













2.6 1
1 1
1 1
1 1
1 1













×

[

1 1 1 1 1
1 1 1 1 1

]

=













3.6 3.6 3.6 3.6 3.6
2 2 2 2 2
2 2 2 2 2
2 2 2 2 2
2 2 2 2 2













Figure 9.12: The best value for u11 is found to be 2.6

Figure 9.12 shows U and V after u11 has been set to 2.6. Note that the sum
of the squares of the errors in the first row has been reduced from 18 to 5.2, so
the total RMSE (ignoring average and square root) has been reduced from 75
to 62.2.













2.6 1
1 1
1 1
1 1
1 1













×

[

y 1 1 1 1
1 1 1 1 1

]

=













2.6y + 1 3.6 3.6 3.6 3.6
y + 1 2 2 2 2
y + 1 2 2 2 2
y + 1 2 2 2 2
y + 1 2 2 2 2













Figure 9.13: v11 becomes a variable y

Suppose our next entry to vary is v11. Let the value of this entry be y, as
suggested in Fig. 9.13. Only the first column of the product is affected by y, so
we need only to compute the sum of the squares of the differences between the
entries in the first columns of M and UV . This sum is
(

5− (2.6y+1)
)2

+
(

3− (y+1)
)2

+
(

2− (y+1)
)2

+
(

2− (y+1)
)2

+
(

4− (y+1)
)2

This expression simplifies to

(4− 2.6y)2 + (2− y)2 + (1− y)2 + (1− y)2 + (3− y)2

As before, we find the minimum value of this expression by differentiating and
equating to 0, as:

−2×
(

2.6(4− 2.6y) + (2 − y) + (1− y) + (1− y) + (3− y)
)

= 0

344 CHAPTER 9. RECOMMENDATION SYSTEMS













2.6 1
1 1
1 1
1 1
1 1













×

[

1.617 1 1 1 1
1 1 1 1 1

]

=













5.204 3.6 3.6 3.6 3.6
2.617 2 2 2 2
2.617 2 2 2 2
2.617 2 2 2 2
2.617 2 2 2 2













Figure 9.14: Replace y by 1.617

The solution for y is y = 17.4/10.76 = 1.617. The improved estimates of U and
V are shown in Fig. 9.14.

We shall do one more change, to illustrate what happens when entries of M
are blank. We shall vary u31, calling it z temporarily. The new U and V are
shown in Fig. 9.15. The value of z affects only the entries in the third row.













2.6 1

1 1

z 1

1 1

1 1













×

[

1.617 1 1 1 1

1 1 1 1 1

]

=













5.204 3.6 3.6 3.6 3.6

2.617 2 2 2 2

1.617z + 1 z + 1 z + 1 z + 1 z + 1

2.617 2 2 2 2

2.617 2 2 2 2













Figure 9.15: u31 becomes a variable z

We can express the sum of the squares of the errors as

(

2− (1.617z + 1)
)2

+
(

3− (z + 1)
)2

+
(

1− (z + 1)
)2

+
(

4− (z + 1)
)2

Note that there is no contribution from the element in the second column of
the third row, since this element is blank in M . The expression simplifies to

(1 − 1.617z)2 + (2− z)2 + (−z)2 + (3− z)2

The usual process of setting the derivative to 0 gives us

−2×
(

1.617(1− 1.617z) + (2 − z) + (−z) + (3− z)
)

= 0

whose solution is z = 6.617/5.615 = 1.178. The next estimate of the decompo-
sition UV is shown in Fig. 9.16. ✷

9.4.4 Optimizing an Arbitrary Element

Having seen some examples of picking the optimum value for a single element in
the matrix U or V , let us now develop the general formula. As before, assume

9.4. DIMENSIONALITY REDUCTION 345













2.6 1

1 1

1.178 1

1 1

1 1













×

[

1.617 1 1 1 1

1 1 1 1 1

]

=













5.204 3.6 3.6 3.6 3.6

2.617 2 2 2 2

2.905 2.178 2.178 2.178 2.178

2.617 2 2 2 2

2.617 2 2 2 2













Figure 9.16: Replace z by 1.178

that M is an n-by-m utility matrix with some entries blank, while U and V
are matrices of dimensions n-by-d and d-by-m, for some d. We shall use mij ,
uij , and vij for the entries in row i and column j of M , U , and V , respectively.
Also, let P = UV , and use pij for the element in row i and column j of the
product matrix P .

Suppose we want to vary urs and find the value of this element that mini-
mizes the RMSE between M and UV . Note that urs affects only the elements
in row r of the product P = UV . Thus, we need only concern ourselves with
the elements

prj =

d
∑

k=1

urkvkj =
∑

k 6=s

urkvkj + xvsj

for all values of j such that mrj is nonblank. In the expression above, we have
replaced urs, the element we wish to vary, by a variable x, and we use the
convention

•
∑

k 6=s is shorthand for the sum for k = 1, 2, . . . , d, except for k = s.

If mrj is a nonblank entry of the matrix M , then the contribution of this
element to the sum of the squares of the errors is

(mrj − prj)
2 =

(

mrj −
∑

k 6=s

urkvkj − xvsj
)2

We shall use another convention:

•
∑

j is shorthand for the sum over all j such that mrj is nonblank.

Then we can write the sum of the squares of the errors that are affected by
the value of x = urs as

∑

j

(

mrj −
∑

k 6=s

urkvkj − xvsj
)2

Take the derivative of the above with respect to x, and set it equal to 0, in
order to find the value of x that minimizes the RMSE. That is,

∑

j

−2vsj
(

mrj −
∑

k 6=s

urkvkj − xvsj
)

= 0

346 CHAPTER 9. RECOMMENDATION SYSTEMS

As in the previous examples, the common factor −2 can be dropped. We solve
the above equation for x, and get

x =

∑

j vsj
(

mrj −
∑

k 6=s urkvkj
)

∑

j v
2

sj

There is an analogous formula for the optimum value of an element of V . If
we want to vary vrs = y, then the value of y that minimizes the RMSE is

y =

∑

i uir

(

mis −
∑

k 6=r uikvks
)

∑

i u
2

ir

Here,
∑

i is shorthand for the sum over all i such that mis is nonblank, and
∑

k 6=r is the sum over all values of k between 1 and d, except for k = r.

9.4.5 Building a Complete UV-Decomposition Algorithm

Now, we have the tools to search for the global optimum decomposition of a
utility matrix M . There are four areas where we shall discuss the options.

1. Preprocessing of the matrix M .

2. Initializing U and V .

3. Ordering the optimization of the elements of U and V .

4. Ending the attempt at optimization.

Preprocessing

Because the differences in the quality of items and the rating scales of users are
such important factors in determining the missing elements of the matrix M , it
is often useful to remove these influences before doing anything else. The idea
was introduced in Section 9.3.1. We can subtract from each nonblank element
mij the average rating of user i. Then, the resulting matrix can be modified
by subtracting the average rating (in the modified matrix) of item j. It is also
possible to first subtract the average rating of item j and then subtract the
average rating of user i in the modified matrix. The results one obtains from
doing things in these two different orders need not be the same, but will tend
to be close. A third option is to normalize by subtracting from mij the average
of the average rating of user i and item j, that is, subtracting one half the sum
of the user average and the item average.

If we choose to normalize M , then when we make predictions, we need to
undo the normalization. That is, if whatever prediction method we use results
in estimate e for an element mij of the normalized matrix, then the value
we predict for mij in the true utility matrix is e plus whatever amount was
subtracted from row i and from column j during the normalization process.

9.4. DIMENSIONALITY REDUCTION 347

Initialization

As we mentioned, it is essential that there be some randomness in the way we
seek an optimum solution, because the existence of many local minima justifies
our running many different optimizations in the hope of reaching the global
minimum on at least one run. We can vary the initial values of U and V , or we
can vary the way we seek the optimum (to be discussed next), or both.

A simple starting point for U and V is to give each element the same value,
and a good choice for this value is that which gives the elements of the product
UV the average of the nonblank elements ofM . Note that if we have normalized
M , then this value will necessarily be 0. If we have chosen d as the lengths of
the short sides of U and V , and a is the average nonblank element of M , then
the elements of U and V should be

√

a/d.

If we want many starting points for U and V , then we can perturb the
value

√

a/d randomly and independently for each of the elements. There are
many options for how we do the perturbation. We have a choice regarding
the distribution of the difference. For example we could add to each element a
normally distributed value with mean 0 and some chosen standard deviation.
Or we could add a value uniformly chosen from the range −c to +c for some c.

Performing the Optimization

In order to reach a local minimum from a given starting value of U and V , we
need to pick an order in which we visit the elements of U and V . The simplest
thing to do is pick an order, e.g., row-by-row, for the elements of U and V ,
and visit them in round-robin fashion. Note that just because we optimized an
element once does not mean we cannot find a better value for that element after
other elements have been adjusted. Thus, we need to visit elements repeatedly,
until we have reason to believe that no further improvements are possible.

Alternatively, we can follow many different optimization paths from a single
starting value by randomly picking the element to optimize. To make sure that
every element is considered in each round, we could instead choose a permuta-
tion of the elements and follow that order for every round.

Converging to a Minimum

Ideally, at some point the RMSE becomes 0, and we know we cannot do better.
In practice, since there are normally many more nonblank elements in M than
there are elements in U and V together, we have no right to expect that we
can reduce the RMSE to 0. Thus, we have to detect when there is little benefit
to be had in revisiting elements of U and/or V . We can track the amount of
improvement in the RMSE obtained in one round of the optimization, and stop
when that improvement falls below a threshold. A small variation is to observe
the improvements resulting from the optimization of individual elements, and
stop when the maximum improvement during a round is below a threshold.

348 CHAPTER 9. RECOMMENDATION SYSTEMS

Gradient Descent

The technique for finding a UV-decomposition discussed in Section 9.4
is an example of gradient descent. We are given some data points – the
nonblank elements of the matrix M – and for each data point we find
the direction of change that most decreases the error function: the RMSE
between the current UV product and M . We shall have much more to
say about gradient descent in Section 12.3.4. It is also worth noting that
while we have described the method as visiting each nonblank point of
M several times until we approach a minimum-error decomposition, that
may well be too much work on a large matrix M . Thus, an alternative
approach has us look at only a randomly chosen fraction of the data when
seeking to minimize the error. This approach, called stochastic gradient

descent is discussed in Section 12.3.5.

Avoiding Overfitting

One problem that often arises when performing a UV-decomposition is that we
arrive at one of the many local minima that conform well to the given data, but
picks up values in the data that don’t reflect well the underlying process that
gives rise to the data. That is, although the RMSE may be small on the given
data, it doesn’t do well predicting future data. There are several things that can
be done to cope with this problem, which is called overfitting by statisticians.

1. Avoid favoring the first components to be optimized by only moving the
value of a component a fraction of the way, say half way, from its current
value toward its optimized value.

2. Stop revisiting elements of U and V well before the process has converged.

3. Take several different UV decompositions, and when predicting a new
entry in the matrix M , take the average of the results of using each
decomposition.

9.4.6 Exercises for Section 9.4

Exercise 9.4.1 : Starting with the decomposition of Fig. 9.10, we may choose
any of the 20 entries in U or V to optimize first. Perform this first optimization
step assuming we choose: (a) u32 (b) v41.

Exercise 9.4.2 : If we wish to start out, as in Fig. 9.10, with all U and V
entries set to the same value, what value minimizes the RMSE for the matrix
M of our running example?

9.5. THE NETFLIX CHALLENGE 349

Exercise 9.4.3 : Starting with the U and V matrices in Fig. 9.16, do the
following in order:

(a) Reconsider the value of u11. Find its new best value, given the changes
that have been made so far.

(b) Then choose the best value for u52.

(c) Then choose the best value for v22.

Exercise 9.4.4 : Derive the formula for y (the optimum value of element vrs
given at the end of Section 9.4.4.

Exercise 9.4.5 : Normalize the matrix M of our running example by:

(a) First subtracting from each element the average of its row, and then
subtracting from each element the average of its (modified) column.

(b) First subtracting from each element the average of its column, and then
subtracting from each element the average of its (modified) row.

Are there any differences in the results of (a) and (b)?

9.5 The Netflix Challenge

A significant boost to research into recommendation systems was given when
Netflix offered a prize of $1,000,000 to the first person or team to beat their
own recommendation algorithm, called CineMatch, by 10%. After over three
years of work, the prize was awarded in September, 2009.

The Netflix challenge consisted of a published dataset, giving the ratings by
approximately half a million users on (typically small subsets of) approximately
17,000 movies. This data was selected from a larger dataset, and proposed al-
gorithms were tested on their ability to predict the ratings in a secret remainder
of the larger dataset. The information for each (user, movie) pair in the pub-
lished dataset included a rating (1–5 stars) and the date on which the rating
was made.

The RMSE was used to measure the performance of algorithms. CineMatch
has an RMSE of approximately 0.95; i.e., the typical rating would be off by
almost one full star. To win the prize, it was necessary that your algorithm
have an RMSE that was at most 90% of the RMSE of CineMatch.

The bibliographic notes for this chapter include references to descriptions
of the winning algorithms. Here, we mention some interesting and perhaps
unintuitive facts about the challenge.

• CineMatch was not a very good algorithm. In fact, it was discovered early
that the obvious algorithm of predicting, for the rating by user u on movie
m, the average of:

350 CHAPTER 9. RECOMMENDATION SYSTEMS

1. The average rating given by u on all rated movies and

2. The average of the ratings for movie m by all users who rated that
movie.

was only 3% worse than CineMatch.

• The UV-decomposition algorithm described in Section 9.4 was found by
three students (Michael Harris, Jeffrey Wang, and David Kamm) to give
a 7% improvement over CineMatch, when coupled with normalization and
a few other tricks.

• The winning entry was actually a combination of several different algo-
rithms that had been developed independently. A second team, which
submitted an entry that would have won, had it been submitted a few
minutes earlier, also was a blend of independent algorithms. This strat-
egy – combining different algorithms – has been used before in a number
of hard problems and is something worth remembering.

• Several attempts have been made to use the data contained in IMDB, the
Internet movie database, to match the names of movies from the Netflix
challenge with their names in IMDB, and thus extract useful information
not contained in the Netflix data itself. IMDB has information about
actors and directors, and classifies movies into one or more of 28 genres.
It was found that genre and other information was not useful. One pos-
sible reason is the machine-learning algorithms were able to discover the
relevant information anyway, and a second is that the entity resolution
problem of matching movie names as given in Netflix and IMDB data is
not that easy to solve exactly.

• Time of rating turned out to be useful. It appears there are movies that
are more likely to be appreciated by people who rate it immediately after
viewing than by those who wait a while and then rate it. “Patch Adams”
was given as an example of such a movie. Conversely, there are other
movies that were not liked by those who rated it immediately, but were
better appreciated after a while; “Memento” was cited as an example.
While one cannot tease out of the data information about how long was
the delay between viewing and rating, it is generally safe to assume that
most people see a movie shortly after it comes out. Thus, one can examine
the ratings of any movie to see if its ratings have an upward or downward
slope with time.

9.6 Summary of Chapter 9

✦ Utility Matrices : Recommendation systems deal with users and items.
A utility matrix offers known information about the degree to which a
user likes an item. Normally, most entries are unknown, and the essential

9.6. SUMMARY OF CHAPTER 9 351

problem of recommending items to users is predicting the values of the
unknown entries based on the values of the known entries.

✦ Two Classes of Recommendation Systems : These systems attempt to pre-
dict a user’s response to an item by discovering similar items and the
response of the user to those. One class of recommendation system is
content-based; it measures similarity by looking for common features of
the items. A second class of recommendation system uses collaborative fil-
tering; these measure similarity of users by their item preferences and/or
measure similarity of items by the users who like them.

✦ Item Profiles : These consist of features of items. Different kinds of items
have different features on which content-based similarity can be based.
Features of documents are typically important or unusual words. Prod-
ucts have attributes such as screen size for a television. Media such as
movies have a genre and details such as actor or performer. Tags can also
be used as features if they can be acquired from interested users.

✦ User Profiles : A content-based collaborative filtering system can con-
struct profiles for users by measuring the frequency with which features
appear in the items the user likes. We can then estimate the degree to
which a user will like an item by the closeness of the item’s profile to the
user’s profile.

✦ Classification of Items : An alternative to constructing a user profile is to
build a classifier for each user, e.g., a decision tree. The row of the utility
matrix for that user becomes the training data, and the classifier must
predict the response of the user to all items, whether or not the row had
an entry for that item.

✦ Similarity of Rows and Columns of the Utility Matrix : Collaborative fil-
tering algorithms must measure the similarity of rows and/or columns
of the utility matrix. Jaccard distance is appropriate when the matrix
consists only of 1’s and blanks (for “not rated”). Cosine distance works
for more general values in the utility matrix. It is often useful to normal-
ize the utility matrix by subtracting the average value (either by row, by
column, or both) before measuring the cosine distance.

✦ Clustering Users and Items : Since the utility matrix tends to be mostly
blanks, distance measures such as Jaccard or cosine often have too little
data with which to compare two rows or two columns. A preliminary
step or steps, in which similarity is used to cluster users and/or items
into small groups with strong similarity, can help provide more common
components with which to compare rows or columns.

✦ UV-Decomposition: One way of predicting the blank values in a utility
matrix is to find two long, thin matrices U and V , whose product is an
approximation to the given utility matrix. Since the matrix product UV

352 CHAPTER 9. RECOMMENDATION SYSTEMS

gives values for all user-item pairs, that value can be used to predict the
value of a blank in the utility matrix. The intuitive reason this method
makes sense is that often there are a relatively small number of issues (that
number is the “thin” dimension of U and V) that determine whether or
not a user likes an item.

✦ Root-Mean-Square Error : A good measure of how close the product UV
is to the given utility matrix is the RMSE (root-mean-square error). The
RMSE is computed by averaging the square of the differences between
UV and the utility matrix, in those elements where the utility matrix is
nonblank. The square root of this average is the RMSE.

✦ Computing U and V : One way of finding a good choice for U and V in a
UV-decomposition is to start with arbitrary matrices U and V . Repeat-
edly adjust one of the elements of U or V to minimize the RMSE between
the product UV and the given utility matrix. The process converges to
a local optimum, although to have a good chance of obtaining a global
optimum we must either repeat the process from many starting matrices,
or search from the starting point in many different ways.

✦ The Netflix Challenge: An important driver of research into recommenda-
tion systems was the Netflix challenge. A prize of $1,000,000 was offered
for a contestant who could produce an algorithm that was 10% better
than Netflix’s own algorithm at predicting movie ratings by users. The
prize was awarded in Sept., 2009.

9.7 References for Chapter 9

[1] is a survey of recommendation systems as of 2005. The argument regard-
ing the importance of the long tail in on-line systems is from [2], which was
expanded into a book [3].

[8] discusses the use of computer games to extract tags for items.
See [5] for a discussion of item-item similarity and how Amazon designed

its collaborative-filtering algorithm for product recommendations.
There are three papers describing the three algorithms that, in combination,

won the NetFlix challenge. They are [4], [6], and [7].

1. G. Adomavicius and A. Tuzhilin, “Towards the next generation of rec-
ommender systems: a survey of the state-of-the-art and possible exten-
sions,” IEEE Trans. on Data and Knowledge Engineering 17:6, pp. 734–
749, 2005.

2. C. Anderson,

http://www.wired.com/wired/archive/12.10/tail.html

9.7. REFERENCES FOR CHAPTER 9 353

2004.

3. C. Anderson, The Long Tail: Why the Future of Business is Selling Less

of More, Hyperion Books, New York, 2006.

4. Y. Koren, “The BellKor solution to the Netflix grand prize,”

www.netflixprize.com/assets/GrandPrize2009 BPC BellKor.pdf

2009.

5. G. Linden, B. Smith, and J. York, “Amazon.com recommendations: item-
to-item collaborative filtering,” Internet Computing 7:1, pp. 76–80, 2003.

6. M. Piotte and M. Chabbert, ”The Pragmatic Theory solution to the Net-
flix grand prize,”

www.netflixprize.com/assets/

GrandPrize2009 BPC PragmaticTheory.pdf

2009.

7. A. Toscher, M. Jahrer, and R. Bell, “The BigChaos solution to the Netflix
grand prize,”

www.netflixprize.com/assets/GrandPrize2009 BPC BigChaos.pdf

2009.

8. L. von Ahn, “Games with a purpose,” IEEE Computer Magazine, pp. 96–
98, June 2006.

