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Abstract

We present an efficient algorithm to retrieve similar music
pieces from an audio database. The algorithm tries to cap-
ture the intuitive notion of similarity perceived by human:
two pieces are similar if they are fully or partially based
on the same score, even if they are performed by different
people or at different speed.

Each audio file is preprocessed to identify local peaks
in signal power. A spectral vector is extracted near each
peak, and a list of such spectral vectors forms our interme-
diate representation of a music piece. A database of such
intermediate representations is constructed, and two pieces
are matched against each other based on a specially-defined
distance function. Matching results are then filtered accord-
ing to some linearity criteria to select the best result to a
user query.

1 Introduction

With the explosive amount of music data available on
the internet in recent years, there has been much interest
in developing new ways to search and retrieve such data
effectively. Most on-line music databases today, such as
Napster and mp3.com, rely on file names or text labels to do
searching and indexing, using traditional text searching tech-
niques. Although this approach has proven to be useful and
widely accepted, it would be nice to have more sophisticated
search capabilities, namely, searching by content. Potential
applications include “intelligent” music retrieval systems,
music identification, plagiarism detection, etc. Traditional
techniques used in text searching do not easily carry over
to the music domain, and people have built a number of
special-purpose systems for content-based music retrieval.
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Music can be represented in computers in two different
ways. One way is based on musical scores, with one entry
per note, keeping track of the pitch, duration (start time /
end time), strength, etc, for each note. Examples of this rep-
resentation include MIDI and Humdrum, with MIDI being
the most popular format. Another way is based on acoustic
signals, recording the audio intensity as a function of time,
sampled at a certain frequency, often compressed to save
space. Examples of this representation include .wav, .au,
and MP3.

A simple software or hardware synthesizer can convert
MIDI-style data into audio signals, to be played back for hu-
man listeners. However, there is no known algorithm to do
reliable conversion in the other direction. For decades peo-
ple have been trying to design automatic transcription sys-
tems that extract musical scores from raw audio recordings,
but have only succeeded in monophonic and very simple
polyphonic cases [1, 3, 9], not in general polyphonic case

�

.
In Section 3.1 we will explain briefly why it is a difficult task
to do automatic transcription on general polyphonic music.

Score-based representations such as MIDI and Humdrum
are much more structured and easier to handle than raw audio
data. On the other hand, they have limited expressive power
and are not as rich as what people would like to hear in
music recordings. Therefore, only a small fraction of music
data on the internet is represented in score-based formats;
most music data is found in various raw audio formats.

Most content-based music retrieval systems operate on
score-based databases, with input methods ranging from
note sequences to melody contours to user-hummed tunes [2,
5, 6]. Relatively few systems are for raw audio databases. A
brief review of related work will be given in Section 2. Our
work focuses on raw audio databases; both the underlying
database and the user query are given in .wav audio format.
We develop algorithms to search for music pieces similar to
the user query. Similarity is based on the intuitive notion
of similarity perceived by humans: two pieces are similar if
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Polyphony refers to the scenario where multiple notes occur at the
same time, possibly by different instruments or vocal sounds. As we know,
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they are fully or partially based on the same score, even if
they are performed by different people or at different tempo.

In the next section we will discuss some previous work
in this area. In Section 3 we will start with some back-
ground information and then give a detailed presentation of
our algorithm to detect music similarity. Section 4 gives
experimental results, and future directions will be discussed
in Section 5.

2 Related Work

Examples of score-based database (MIDI or Hum-
drum) retrieval systems include the ThemeFinder project
(http://www.themefinder.org) developed at Stanford Uni-
versity, where users can query its Humdrum database by
entering pitch sequences, pitch intervals, scale degrees or
contours (up, down, etc). The “Query-By-Humming” sys-
tem [5] at Cornell University takes a user-hummed tune as in-
put, converts it to contour sequences, and matches it against
its MIDI database. Human-hummed tunes are monophonic
melodies and can be automatically transcribed into pitches
with reasonable accuracy, and melody contour information
is generally sufficient for retrieval purposes [2, 5, 6].

Among music retrieval research conducted on raw au-
dio databases, Scheirer [7, 8] studied pitch and rhythmic
analysis, segmentation, as well as music similarity estima-
tion at a high level such as genre classification. Tzanetakis
and Cook [10] built tools to distinguish speech from music,
and to do segmentation and simple retrieval tasks. Wold
et al. at Muscle Fish LLC [11] developed audio retrieval
methods for a wider range of sounds besides music, based
on analyses of sound signals’ statistical properties such as
loudness, pitch, brightness, bandwidth, etc. Recently, *CD
(http://www.starcd.com)commercialized a music identifica-
tion system that can identify songs played on radio stations
by analyzing each recording’s audio properties.

Foote [4] experimented with music similarity detection
by matching power and spectrogram values over time using a
dynamic programming method. He defined a cost model for
matching two pieces point-by-point, with a penalty added
for non-matching points. Lower cost means a closer match
in the retrieval result. Test results on a small test corpus
indicated that the method is feasible for detecting similarity
in orchestral music. Part of our algorithm makes use of a
similar idea, but with two important differences: we focus
on spectrogram values near power peaks only, rather than
over the entire time period, therefore making tempo changes
more transparent; furthermore, we evaluate final matching
results by some linearity criteria which is more intuitive and
robust than the cost models used for dynamic programming.
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Figure 1. Spectrogram of piano notes C, E, G

3 Detecting Similarity

In this section we start with some background infor-
mation on signal processing techniques and musical signal
properties, then give a detailed discussion of our algorithm.

3.1 Background

After decompression and parsing, each raw audio file
can be regarded as a list of signal intensity values, sampled
at a specific frequency. CD-quality stereo recordings have
two channels, each sampled at 44.1kHz, with each sam-
ple represented as a 16-bit integer. In our experiments we
use single-channel recordings of a lower quality, sampled
at 22.05kHz, with each sample represented as an 8-bit inte-
ger. Therefore, a 60-second uncompressed sound clip takes���������������
	����������������

bytes.
We use the Short-Time Fourier Transform (STFT) to con-

vert each signal into a spectrogram: split each signal into
1024-byte-long segments with 50% overlap, window each
segment with a Hanning window and perform 2048-byte
zero-padded FFT on each windowed segment. Taking ab-
solute values (magnitudes) of the FFT result, we obtain a
spectrogram giving localized spectral content as a function
of time. Since the details of this process are covered in most
signal processing textbooks, we will not discuss them here.

Figure 1 shows a sample spectrogram on the note se-
quence of middle C, E and G played on a piano. The
horizontal axis is time in seconds, and the vertical axis is
frequency component in Hz. Lighter pixels correspond to
higher values. If we zoom in to time ��� ��� and look at the
frequency components of note G closely, we notice that it
has many peaks (Figure 2), one at 392 Hz (its fundamental
frequency) and several others at integer multiples of 392 Hz
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Figure 2. Frequency components of note G
played by a piano
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Figure 3. Illustration of polyphony

(its harmonics). Fundamental frequency corresponds to the
pitch (middle G in this case), and the pattern of harmonics
depends on the characteristics of the musical instrument that
plays it.

When multiple notes occur at the same time
(“polyphony”), their frequency components add. Figure
3(a)-(c) show the frequency components of C, E and G
played individually, while Figure 3(d) shows that of all three
notes played together. In this simple example it is still pos-
sible to design algorithms to extract individual pitches from
the chord signal C-E-G, but in actual music recordings, many
more notes co-exist, played by many different instruments,
of which we do not know the patterns of harmonics. In addi-
tion, there are sounds produced by percussion instruments,
human voice, and noise. The task of automatic transcription
of music from arbitrary audio data (i.e., conversion from
raw audio format into MIDI) becomes extremely difficult,
and remains unsolved today. Our algorithm, as in most other
music retrieval systems, does not attempt to do transcription.
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Figure 4. Power plot of Tchaikovsky’s Piano
Concerto No. 1
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Figure 5. True peak vs. bogus peak

3.2 The Algorithm

The algorithm consists of three components, which are
discussed separately.

1. Intermediate Data Generation.

For each music piece, we generate its spectrogram as
discussed in Section 3.1, and plot its instantaneous
power as a function of time. Figure 4 shows such a
power plot for a 40-second sound clip of Tchaikovsky’s
Piano Concerto No. 1. Next, we identify peaks in this
power plot, where peak is defined as a local maximum
value within a neighborhood of a fixed size. This def-
inition helps remove bogus local “peaks” which are
immediately followed or preceded by higher values.
For example, in Figure 5,

� �� ��
are true peaks but �

is a bogus peak. Intuitively, these peaks roughly cor-
respond to distinctive notes or rhythmic patterns. For
the 60-second music clips used in our experiments, we
typically find 100-200 peaks in each of them.

After a list of peaks is obtained, we extract the fre-
quency components near each peak. We take 180
samples of frequency components between 200Hz and
2000Hz. Average values over a short time period fol-
lowing the peak are used in order to reduce sensitivity
to noise and to avoid the “attack” portions produced by
certain instruments (short, non-harmonic signal seg-
ments at the onset of each note).
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Figure 6. Set of matching pairs

In the end, we get � spectral vectors of 180 dimensions
each, where � is the number of peaks obtained. We
normalize each spectral vector so that they each have
mean 0 and variance 1. After normalization, these� vectors form our intermediate representation of the
corresponding music piece. Typically each new note
in a piece corresponds to a new peak, and therefore to
a vector in this representation. Notice that we do not
expect to capture all new notes in this way, and will
almost certainly have some false positives and false
negatives. However, later stages of the algorithm will
compensate for this inaccuracy.

2. Matching.

This component matches two music pieces against each
other and determines how close they are, based on the
intermediate representation generated above. Match-
ing comes in two stages: minimum-distance matching
and linearity filtering.

(a) Minimum-distance matching

Suppose we would like to compare two music
pieces with spectral vectors

�
�
����� � ��� ���� and� �

 � �  ��� �  ��� respectively. Define ��	�
 to be root-
mean-squared error between vectors

� 	 and � 
 .
It can be shown that ��	�
 is linearly related to
the correlation coefficient of the original spec-
tra near peak � of the first piece and peak  of
the second one. A smaller � 	�
 value corresponds
to a larger correlation coefficient. (See [12] for
proof.) Therefore, � 	�
 is a natural indicator of
similarity of the original spectra at corresponding
peaks.

Let ��� 	������
�
��

��� ���� � �� � �  ��� � ���� � �� � ��� be
a set of � matches, pairing

���� 
with ��!  ,� �#"

with � ! " , etc, as shown in Figure 6. (
�%$

�
�'& �(� &*)+)+),& � � $ � ,

�-$.�
�'& �/� &0)+)�)1&� � $32 .)

Given the following subsets of
�

and � vectors:465 	7� �
�
�� �  ��� � �� 5 � , 8-9 	7� � �

 � �  ��� �  � 9 � ,
and a particular match ��� ( � $.:;$ �  � $=<>$2

), define the distance of
4 5

and 8 9 with respect

to � � as:

� 5+? 9 ? @BA
	C� �D

	FE �

� �,G ! G �IHKJ ��: H <ML � � �

and the minimum distance between
4N5

and 8-9
as:

� 5+? 9
	PORQTS@ � 5+? 9 ? @

The distance definition is basically a sum of all
matching errors plus a penalty term for the num-
ber of non-matching points (weighted by J ). Ex-
periments have shown that J 	 � � � works rea-
sonably well.

The minimum distance � 5 9 can be found by a
dynamic programming approach, because

�VU ? 	 	 �W	 ? U 	 J �
and for any �NX �  BX �

,

�W	 ? 
 	PORQTS � �B	ZY � ? 
[Y �IH ��	�
  �W	ZY � ? 
/Y �\H � J 
�W	 ? 
/Y �]H�J  �W	ZY � ? 
 HKJ6�

The optimal matching set �^� that leads to the
minimum distance can also be traced from the
dynamic programming algorithm.

Based on the definitions above, the minimum dis-
tance between the two music pieces with spectral
vectors

�
�
����� ����� ���� and � �

 � �  �����  � � is � � ? � ,
and can be found with dynamic programming.

(b) Linearity filtering

Although the previous step gives the minimum
distance and optimal matching based on the dis-
tance function, it is not robust enough for music
comparison. Experiments have shown that cer-
tain subjectively dissimilar pieces may also end
up with a small distance score, therefore appear-
ing similar to the system. To make the algorithm
more robust, further filtering is needed.

Figure 7 shows two ways to match
�

against � ,
both with 10 matches. Both may yield a low
matching score, but the top one is obviouslybetter
than the bottom one. In the top one, there is a
slight tempo change between the two pieces, but
the change is uniform in time. In the bottom one,
however, there is no plausible explanation for the
twisted matching. If we plot a 2-D graph of the
matching points of

�
on the horizontal axis vs.

the corresponding points of � on the vertical axis,
the top match would give a straight line while the
bottom one would not.
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Figure 7. “Good” vs. “bad” matching

Formally, the matching set

� � 	C�,���
�
��

� � ���� � ��/� �  � ��� ���� � �� � ���
can be plotted on a 2-D graph, with the origi-
nal location (time offset) of peaks

�
�
�� �  ����� �� �

(of the first music piece) on the horizontal axis
and that of peaks

�
�
�� �  ����� �� � (of the second

piece) on the vertical axis. If the two pieces were
indeed mostly based on the same score, the plot-
ted points should fall roughly on a straight line.
Without tempo change, the line should be at a 45-
degree angle. With possible tempo change, the
line may be at a different angle, but it should still
be straight.
In this step of linearity filtering, we examine the
graph of the optimal matching set obtained from
dynamic programming above, fit a straight line
through the points (using least mean-square cri-
teria), and check if any points fall too far away
from the line. If so, remove the most outlying
point and fit a new line through the remaining
points. Repeat the process until all remaining
points lie within a small neighborhood of the fit-
ted line. (In the worst case, only two points are
left at the end. But in practice we stop when fewer
than 10 points remain.)
The total number of matching points after this
filtering step is taken as an indicator of how well
two pieces match. As will be shown in Section 4,
this criterion is remarkably effective in detecting
similarity.

3. Query Processing.

All music files are preprocessed into the intermedi-
ate representation of spectral vectors discussed ear-
lier. Given a query sound clip (also converted into the
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Figure 8. Summary of algorithm structure

intermediate representation), the database is matched
against the query using minimum-distance matching
and linearity filtering algorithm. The pieces that end
up with the highest number of matching points (and if
above a certain threshold) are selected as answers to
the user query.

Figure 8 summarizes the overall structure of the music
retrieval algorithm.

3.3 Complexity Analysis

Time complexity of the preprocessing step is
� � � � ,

where � is the size of the database. Because only “peak”
information is recorded in the spectral vector representa-
tion, space required is only a fraction of the original audio
database.

Dynamic programming for minimum-distance matching
takes

� ��2 � � time for each run,
� ��2 � � � overall, where

2
is the expected number of peaks in each piece. Because

2
is much less than � when the database is large, it can be
regarded as a constant and

� � � � is the dominant factor.
Linearity filtering takes a negligible amount of time in

practice, although its worst-case complexity is also up to
� ��2 � � � .

Overall, assuming
2

is a constant factor, the algorithm
runs in

� � � � time for each query. When the database gets
large, the running time of

� � � � may be too slow. We are
experimenting with indexing schemes [13] which will give
better performance.
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Figure 9. Power plots

4 Experiments

Our data collection is done by recording CDs or tapes
into PCs through a low-quality PC microphone. No special
efforts are taken to reduce noise. This setup is intentional, in
order to test the algorithm’s robustness and performance in
a practical environment. Both classical music and modern
music are included, with classical music being the focus.
Instead of taking the entire pieces, only 30- to 60-second
clips are taken from each piece, because that much data is
generally enough for similarity detection.

We identify five different types of “similar” music pairs,
with increasing levels of difficulty:

� Type I: Identical digital copy

� Type II: Same analog source, different digital copies,
possibly with noise

� Type III: Same instrumental performance, different vo-
cal components

� Type IV: Same score, different performances (possibly
at different tempo)

� Type V: Same underlying melody, different otherwise,
with possible transposition

Sound samples of each type can be found at http:
//www-db.stanford.edu/˜yangc/musicir/ .

Figure 9 shows the power plots of two different per-
formances of Tchaikovsky’s Piano Concerto No. 1 (A and
B) and two different performances of Chopin’s “Military”
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Figure 10. Pairwise matching result

Polonaise (C and D). Both pairs are of Type-IV similarity.
Each pair was performed by different orchestras, published
by different companies. There were variations in tempo as
well as in performance style. From the power plots it can
be seen that notes are emphasized differently. Neverthe-
less, both pairs yield small distance scores after minimum-
distance matching. On the other hand, a few dissimilar pairs
also yield scores that are not large, such as Tchaikovsky’s Pi-
ano Concerto No. 1 (A) vs. Brahms’ Cradle Song (referred
to as E from now on), and Chopin’s “Military” Polonaise
(D) vs. Mendelssohn’s Spring Song (referred to as F from
now on).

Figure 11 shows sample plots of optimal matching sets
before linearity filtering (solid lines connecting the dots),
where the horizontal axis is time (in seconds) of the first
piece and vertical axis is time of the second piece. A straight
line is fitted through each set of matching points (dashed
lines). As is clear from the plots, A and B are truly similar
(almost all points are colinear), while A and E are not; C
and D are truly similar, while D and F are not.

After certain matching points are removed by linearity
filtering, Figure 11 becomes Figure 12. The pairs (A, B)
and (C, D) have 49 and 54 matching points respectively,
while the other two pairs have fewer than 15 remaining
matching points.

Figure 10 shows the pairwise matching result of a set of
10 music pieces, of which two pairs ((A, B) and (C, D))
are different performances of the same scores (with Type-
IV similarity). The result is shown as a

� � � ���
matrix

where the entry ( � ,  ) gives the final number of matching
points between two pieces � and  after linearity filtering.
Because of symmetry only the upper triangle of the matrix
is presented. Two peaks in the graph clearly indicate the
discovery of the “correct” pairs.



0 10 20 30 40
0

5

10

15

20

25

30

35
A. vs. B.

0 10 20 30 40
0

10

20

30

40
C. vs. D.

0 10 20 30 40
0

10

20

30

40

50

60
A. vs. E.

0 10 20 30 40
0

10

20

30

40
D. vs. F.

Figure 11. Matching plots before filtering
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Figure 13. Retrieval Accuracy

More queries are conducted on a larger dataset of 120
music pieces, each of size 1MB. For each query, items from
the database are ranked according to the number of final
matching points with the query music, and the top 2 matches
are returned. Figure 13 shows the retrieval accuracy for each
of the five types of similarity queries. As can be seen from
the graph, the algorithm performs very well in the first 4
types. Type-V is the most difficult, and better algorithms
need to be developed to handle it.

5 Conclusions and Future Work

We have presented an efficient algorithm to perform
content-based music retrieval based on spectral similarity.
Experiments have shown that the approach can detect sim-
ilarity while tolerating tempo changes, some performance
style changes and noise, as long as the different perfor-
mances are based on the same score.

Future research may include the study of the effects of
various threshold parameters used in the algorithm, and to
find ways to automate the selection of certain parameters to
optimize performance.

We are experimenting with indexing schemes [13] in
order to get faster retrieval response. We are also planning
to augment the algorithm to handle transpositions (pitch
shifts). Although transpositions of entire pieces are not very
common, it is common to have small segments transposed
to a different key, and it would be important that we detect
such cases.

One other future direction is to design algorithms to ex-
tract high-level representations such as approximate melody
contours. This task is certainly non-trivial, but it may be
less difficult than transcription, and at the same time very
powerful in similarity detection for complex cases.

Instead of using the peak-detection scheme during pre-

processing, one can also incorporate existing rhythm de-
tection algorithms to improve performance. Also, different
algorithms may be suited to different types of music, so it
may be helpful to conduct some analysis of general statisti-
cal properties before deciding which algorithm to use.

Content-based retrieval of musical audio data is still a new
area that is not well explored. There are many possible future
directions, and thispaper is only intended as a demonstration
on the feasibility of certain prototype ideas, of which more
extensive experiments and research will need to be done.
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