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Abstract

Link spam is used to increase the ranking of certain target web pages by misleading the
connectivity-based ranking algorithms in search engines. In this paper we study how
web pages can be interconnected in a spam farm in order to optimize rankings. We also
study alliances, that is, interconnections of spam farms. Our results identify the optimal
structures and quantify the potential gains. In particular, we show that alliances can be
synergistic and improve the rankings of all participants. We believe that the insights we
gain will be useful in identifying and combating link spam.

1 Introduction

As search engines become ubiquitous tools of our everyday lives, individuals and businesses crave
to see their web pages showing up frequently on the top of query results lists. The economic
advantage of high search engine ranking led to the emergence of the dark art of web spamming [4]:
some authors create web content with the main purpose of misleading search engines and obtaining
higher-than-deserved ranking in search results.

Successful spamming attempts induce a bias in search results and decrease quality, as truly
popular pages are replaced by artificially boosted spam documents. Counterbalancing the negative
effects of an increasing volume of web spam represents a major challenge for today’s web search
engines [5].

Among the plethora of techniques used by spammers, one that deserves special attention is link
spamming. Link spamming refers to the cases when spammers set up structures of interconnected
pages, called link spam farms, in order to boost the connectivity-based ranking, most frequently the
PageRank [8], of one or a small number of target pages. The issue of link spamming is important
not only because it can render significant gains in the rankings of target pages, but also because
many instances of it are very hard to detect.

In this paper we analyze how link spammers manipulate PageRank scores. We study the
problem in two phases. First, we take a look at the ways in which a spammer can improve the
ranking of a single target page. Then, we investigate how groups of spammers could collaborate by
forming alliances of interconnected spam farms. For the latter scenario, we suppose that individual
spammers already have their own spam farms. Such spammers might want to cooperate, either
for mutual benefit, or based on a financial agreement. As we will see, with carefully devised
interconnection of spam farms, cooperation could be reciprocally advantageous to all participants.
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While recent analyses of PageRank’s mathematical properties [1, 7] touch on the subject of link
spamming, our paper represents a more detailed discussion dedicated exclusively to this subject.

It is important to mention that while our ultimate goal is to combat link spam, in this paper we
only focus on studying various farm structures and alliances that can impact rankings. We briefly
touch on the topic of combating link spam in Section 7, where we illustrate how our understanding
of spam structures can lead to useful detection schemes.

One obvious question that arises is whether we help spammers by presenting our results. Our
experience indicates that all the spamming techniques that we will present are already widely used
by the large community of spammers. Our contribution here is simply to formalize these link spam
structures, to quantify their impact on ranking, and to compare them against each other.

The rest of the paper is organized as follows. First, we offer an overview of PageRank, the
commonly used ranking algorithm that we investigate from the perspective of link spamming.
Then, we discuss our model for a spam farm, and derive the optimal internal structure of a farm
based on the properties of PageRank. Sections 4 and 5 first focus on the optimal structure of two
interconnected spam farms, then also analyze larger spam farm alliances. Next, we discuss how
our findings apply to generic link spam structures. We conclude the paper with a summary of
applicable link spam detection techniques.

2 Preliminaries

2.1 Web Model

In this paper we adopt the usual graph model for representing the web of interlinked hypertext
documents. Let G = (V, E) be the web graph with vertices V, representing web pages, and directed
unweighted edges E , representing hyperlinks between pages. Please note that we do not allow self
loops (links on a page pointing to itself).

As we will see, pages without outlinks play an important role in our analysis. Such pages are
usually referred to as sink pages.

It is common to associate with the web graph a transition matrix T = (Ti,j)n×n defined as:

Ti,j =

{
1/out(i), if (i, j) ∈ E
0, otherwise

where out(i) is the outdegree of page i, that is, the number of links (edges) leaving i.

2.2 The PageRank Algorithm

Search engines usually combine the results of several ranking algorithms to produce the ordering of
the pages returned as answers to a query. One of the best-known ranking algorithms is PageRank
[8], which computes global importance scores for all web pages. Because the scores are determined
based on the link structure of the web, PageRank is a natural target to link spamming. Our
discussion will focus on link spam structures that target the PageRank algorithm. Next, we offer
a short overview of PageRank.

Let us introduce a constant c called the damping factor. The scores computed by PageRank
will correspond to the stationary distribution of a Markov chain [6] where:

1. The states represent web pages.
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2. A transition from page i to page j occurs with a probability c/out(i) whenever one of the
out(i) outgoing links of i points to j.

3. With probability (1− c), the transition from a page will be made uniformly at random to any
web page. This latter case is called random jump or teleportation.

The traditional formulation of the PageRank problem is based on the eigensystem corresponding
to a Markov matrix. For the purposes of this paper, we define the PageRank score vector p in a
different way, as the solution of the matrix equation

p = cT′ p +
1− c

N
1N , (1)

where c is the damping factor, T′ is the transposed transition matrix, N is the total number of
web pages, while 1N is a vector consisting of N elements of 1. Hence, our formulation is based
on a linear system, which not only yields the same relative scores for the pages as the traditional
approach, but also has several additional advantages [7].

3 Single-Target Spam Farm Model

In the first part of the paper, we introduce our spam farm model, and investigate what link spam
structure yields the highest PageRank of the target page. This sets the stage for the analysis of
spam alliances (Section 4) and other link spam structures that deviate in some ways from the
presented ones (Section 6).

3.1 Definition

As mentioned in Section 1, link spamming targets those ranking algorithms that derive the impor-
tance of a page from the link structure of the web. In order to boost the rankings of some of their
pages, spammers often set up (large) groups of web pages with carefully devised interconnection
structures. We will call the group of pages controlled by a spammer a link spam farm, or simply a
spam farm.

The initial link spam farm model that we adopt is based on the following rules:

1. Each spam farm has a single target page. The target page is the one that the spammer wishes
to expose to a web user through a search engine. Therefore, the spammer focuses on boosting
the ranking of the target page.

2. Each spam farm contains a fixed number of boosting pages that exist in order to improve
the ranking of the target page, possibly by pointing to it. These boosting pages are under
the spammer’s full control. We assume that there is always an upper bound on the size of
the spam farm (the number of boosting pages) because of the associated maintenance costs
(domain registration fees, page hosting fees, hardware costs, invested time).

3. It is also possible for spammers to accumulate links from pages outside the spam farm (for
instance, by finding their way into a web directory, or an unmoderated bulletin board). We
call these external links hijacked links, and the total PageRank that reaches the farm through
these links is referred to as the leakage. Please note that the spammer does not have full
control over the pages that contain hijacked links, i.e., can neither influence their PageRank
scores significantly, nor determine where and how the scores get distributed through the
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Figure 1: An optimal structure for a single spam farm with one target page.

outlinks. Therefore, the actual amount of leakage is fairly independent of the spammer’s
efforts—the spammer can at most struggle to hijack many links, preferably on pages that are
suspected of having a high PageRank.

3.2 Structure

Let us consider a spam farm consisting of k boosting pages plus a target page. It is possible to
identify an entire class of farm structures that yield the highest PageRank score for the target
page. One optimal structure is presented in Figure 1. The k boosting pages point directly to the
target, the target links back to each of them, and all hijacked links point to the target, providing
the leakage λ.

First, let us take a look at what target score this structure yields. Then, we prove that this is
the best target score one could achieve.

Theorem 1 The PageRank score p0 of the target page in Figure 1 is

p0 =
1

1− c2

[
cλ +

(1− c)(ck + 1)
N

]
.

Proof. According to Equation 1, the scores for the spam farm pages in 1 are determined by the
following system: {

p0 = cλ + c
∑k

i=1 pi + (1− c)/N
pi = cp0/k + (1− c)/N, for i = 1, . . . , k

Replacing pi in the first equation yields

p0 = cλ + ck

(
cp0

k
+

1− c

N

)
+

1− c

N

=
1

1− c2

[
cλ +

(1− c)(ck + 1)
N

]
.

3.3 Optimality

In this section we identify the class of spam farm structures that yield the highest target PageRank.
Consider the generic spam farm in Figure 2, with a single target and k boosting pages. The pages
of the farm are interconnected in an arbitrary manner. Spam pages may have outlinks pointing
to pages outside the farm (although such links are omitted in the figure). Hijacked links point to
pages in the farm so that the leakage to the target is λ0 ≥ 0, and to boosting page i is λi ≥ 0. The
total leakage is λ = λ0 + · · ·+ λk. Please note that while the spam pages may point to good pages,
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Figure 2: Generic farm structure used in Theorem 2.

and thus possibly have some impact on the leakage, based on Assumptions 3 from Section 3.1, λi

does not actually depend on the PageRank scores of spam pages.
We introduce two vectors p and λ for the PageRank and leakage of the boosting pages,

p =


p1

p2
...

pk

 λ =


λ1

λ2
...

λk

 .

With this notation, the matrix equation of the PageRank scores of the spam farm pages can be
written as (

p0

p

)
= c

(
λ0

λ

)
+ c

(
0 e′

f G

) (
p0

p

)
+

1− c

N
1k+1 , (2)

where the row vector e′ corresponds to the weights of the links from boosting pages to the target,
f contains the weights of links from the target to the boosting pages, and G is the weight matrix
capturing the connections among boosting pages.

Theorem 2 The PageRank score p0 of the target is maximal if the farm is structured so that
e = 1k, 1′

kf = 1, G = 0k×k, and λ0 = λ and λi = 0, for i = 1, . . . , k.

Proof. The proof provided next extends a similar one that was originally presented in [1] by also
allowing for leakage.

Let us first rewrite Equation 2 into the system{
p0 = cλ0 + ce′p + (1− c)/N
p = cλ + cfp0 + cGp + [(1− c)/N ] 1k

(3)

and multiply both sides of the second equation by 1′
k:

1′
kp = c1′

kλ + c1′
kfp0 + c1′

kGp +
(1− c)k

N
.

We introduce the scalars α, β, and γ:

α =
e′p
1′

kp
β =

1′
kGp
1′

kp
γ = 1′

kf . (4)

The following properties hold: α, β, γ ≥ 0; α + β ≤ 1; and γ ≤ 1. Please note that α + β is 0
only when all boosting pages are sinks; is strictly between 0 and 1 if some boosting pages are sinks
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and/or point to pages outside the farm; and is 1 only when all boosting pages point to and only to
the target. Similarly, γ is less than 1 if the target is a sink, or it has outlinks pointing to external
pages; and is equal to 1 if and only if the target points to some or all boosting pages. It is also
easy to see that

1′
kλ = λ1 + · · ·+ λk = λ− λ0 . (5)

Using Equations 3, 4, and 5, we produce the following system:{
p0 = cλ0 + cα1′

kp + (1− c)/N
1′

kp = c(λ− λ0) + cγp0 + cβ1′
kp + (1− c)k/N

Accordingly,

1′
kp =

1
1− cβ

[
c(λ− λ0) + cγp0 +

(1− c)k
N

]
and

p0 =
1− cβ

1− cβ − c2αγ

[
cλ0 +

c2α(λ− λ0)
1− cβ

+
c(1− c)αk

(1− cβ)N
+

1− c

N

]
.

Due to the properties of α, β, and γ, 1 − cβ − c2αγ > 0. Furthermore, p0 is monotone
nondecreasing in γ. Hence, independently of other factors, γ should be 1 in order to achieve the
maximum p0.

Replacing γ by 1, the PageRank of the target becomes:

p0 =
1

1− cβ − c2α

[
c2α(λ− λ0) +

c(1− c)αk

N

+ (1− cβ)
(

cλ0 +
1− c

N

)]
,

where p0 is a function of α, β, and λ0. Also, please remember that the leakage λ0 is independent
of the internal structure of the farm, or the PageRank scores of the spam pages.

Correspondingly, the partial derivative of p0 with respect to β is

∂p0

∂β
=

c3α [cλ0 + λ− λ0 + (1− c)/N ] + c2(1− c)αk/N

(1− cβ − c2α)2
, (6)

which is always non-negative for β ∈ [0, 1], being zero if and only if α = 0. Therefore, p0 is maximal
on the boundary α + β = 1.

Replacing β = (1−α) in Equation 6, we compute the partial derivative of p0 with respect to α:

∂p0

∂α
=

c2λ0N + c(λ− λ0)N + (1− c)k + c2 − c3

(1− c)(1 + cα)2N
.

Both the numerator and denominator of the derivative are positive, therefore p0 is monotone
increasing in α and reaches its maximum in α = 1.

Replacing α = 1, the equation of p0 becomes

p0 =
1

1− c2

[
cλ0 + c2(λ− λ0) +

c(1− c)k
N

+
1− c

N

]
.
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Figure 3: Another optimal structure for a single spam farm with one target page.

The partial derivative with respect to λ0 is positive:

∂p0

∂λ0
=

c− c2

1− c2
> 0 .

Hence, p0 is maximal when λ0 reaches its highest value λ0 = λ. In this case, λ1 = λ2 = · · · = λk = 0.
The corresponding maximal p0 is

p0 =
1

1− c2

[
cλ +

(1− c)(ck + 1)
N

]
.

To summarize, p0 is maximal if and only if

• α = 1, that is, e = 1k (all boosting pages point to and only to the target),

• β = 0, that is, G = 0k×k (there are no links among the boosting pages),

• γ = 1, that is, 1′
kf = 1 (the target points to some or all boosting pages),

• λ0 = λ, and λi = 0 for i = 1, . . . , k (all hijacked links point to the target).

In addition, there are no outlinks pointing to external pages because γ = 1 and α + β = 1.

The farm structure in Figure 1 satisfies the properties required by Theorem 2. Similar struc-
tures will also satisfy the properties, as long as a proper subset of the target-to-boosting links
are maintained. The extreme case when the target points to only one boosting page is shown in
Figure 3.

3.4 Leakage

We have seen that in the optimal case the target accumulates PageRank from the boosting pages
and through the hijacked links. In this section we show that the leakage can be thought of as an
additional number of boosting pages. Therefore, we will not need a separate treatment of leakage
in the rest of the paper.

Theorem 3 For an optimal farm, a leakage of λ increases the target score by just as much as
an additional number of dλ boosting pages would, where d is a constant that depends on the farm
structure.

Proof. The PageRank score of the target page is

p0 =
1

1− c2

[
cλ +

(1− c)(ck + 1)
N

]
.
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Figure 4: Making boosting pages reachable through hijacked links.

Consider another farm without leakage, but with an additional number of m boosting pages.
The target score is

q0 =
1

1− c2

{
(1− c) [c(k + m) + 1]

N

}
.

The two scores are equal if and only if

cλ +
(1− c)(ck + 1)

N
=

(1− c) [c(k + m) + 1]
N

and therefore m = λN/(1− c).

Please note that we are not expecting actual farms to lack leakage and be isolated from the
rest of the web. Leakage is treated as additional boosting pages merely to simplify the exposition
and our mathematical derivations. Our results can be easily generalized to the case when there is
leakage.

3.5 Reachability

The structure presented in Figure 1 has the property that if the search engine’s crawler reaches the
target through at least one hijacked link, then the entire link farm becomes reachable. Thus, the
entire farm gets crawled and indexed by a search engine and the boosting pages contribute to the
score of the target indeed.

While reachability through hijacked links is important, there are also other ways in which one
can make the crawler aware of specific pages. For instance, in order to make sure that the search
engine’s crawler reaches all the pages of a spam farm, one could use a separate domain for each of
the pages. As search engines usually crawl all domains from the registrar databases, all the pages
would get crawled and indexed this way.

Also, it is possible to “sacrifice” some hijacked links and point to the boosting pages instead of
the target. A corresponding spam farm is presented in Figure 4 (dashed lines represent hijacked
links). These alternative approaches to reachability will become important later in our discussion,
when we remove the links from target pages to boosting pages.

4 Alliances

The first part of this paper addressed the case of a single spam farm. In the second part of this paper,
we turn our attentions to groups of spammers, each with an already built farm, and investigate
how interconnecting their farms impacts the PageRank scores of target pages. As mentioned earlier
in Section 1, these types of collaborations emerge on the web, either because they are mutually
beneficial, or as a result of some financial agreement between a “client” and a “service provider.”
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Figure 5: Two spam farms with all boosting pages pointing to both targets.

First, in this section we derive formulas that quantify features of various alliance structures.
Then, in Section 5 we use the derived formulas to study some collaboration scenarios of interest.

4.1 Alliances of Two

Let us first discuss ways in which we can combine two optimal farms. The farms have a single
target page each, and have k and m (k < m) boosting pages, respectively. (As mentioned earlier,
leakage is treated as being a fraction of the boosting pages.) Let p̄0 and q̄0 denote the (maximal)
PageRank scores of the target pages when the farms are not interconnected:

p̄0 =
ck + 1

(1 + c)N
q̄0 =

cm + 1
(1 + c)N

.

Then, p0 and q0 will denote the scores of the targets when the two farms are interconnected in
one way or another. We investigate three interconnection techniques next.

4.1.1 Shared Boosting Pages

There are a number of ways in which one could connect two spam farms. One way of doing it is
just having all boosting pages point to both of the targets, as presented in Figure 5. In order to
produce such a structure, both spammers have to add links from their boosting pages to the target
of the other. Hence, a total number of (k + m) new links has to be added.

What we achieve through this interconnection structure is two target pages with identical scores:

Theorem 4 For the structure presented in Figure 5, p0 = q0 = (p̄0 + q̄0)/2.

Proof. The PageRank equations for the two interconnected farms are as follows:
p0 = c

∑k
i=1 pi/2 + c

∑m
j=1 qj/2 + (1− c)/N

q0 = c
∑k

i=1 pi/2 + c
∑m

j=1 qj/2 + (1− c)/N
pi = c(p0 + q0)/(k + m) + (1− c)/N, for i = 1, . . . , k

qj = c(p0 + q0)/(k + m) + (1− c)/N, for j = 1, . . . ,m

Hence, p0 = q0 and pi = qj . Replacing pi and qj in the first equation we get

p0 =
c(k + m)/2 + 1

(1 + c)N
= (p̄0 + q̄0)/2 .
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Figure 6: Two spam farms with interlinked target pages.

Accordingly, sharing boosting pages is clearly advantageous to the spammer with the smaller
initial farm, as its target PageRank increases from p0 ∝ k to p̄0 ∝ (k + m)/2 > k.

On the other hand, sharing is inconvenient to the spammer with the larger initial farm, as the
PageRank of its target decreases.

The net effect of sharing boosting pages is just equivalent to the scenario when there are two
unconnected farms, and (m− k)/2 boosting pages simply get “moved” from the larger farm to the
smaller one.

4.1.2 Connected Target Pages with Links to Boosting Pages

Instead of connecting all boosting pages to both targets, one could connect the two targets only, so
that each would point to the other. In this case, the boosting pages in each of the two farms would
still point to their respective target only. Also, targets would point back to the boosting pages in
their own farms.

A simple analysis, similar to the one for Theorem 4, reveals that the effect achieved by this
interconnection structure is exactly the same as in the case when all boosting pages are shared:
both targets have the same score (p̄0 + q̄0)/2.

Please note that while all that we achieved is still a redistribution, rather than an increase of the
target PageRank scores, this structure bears an advantage over the one presented in Section 4.1.1:
the number of interconnecting links that have to be added is reduced from (k + m) to only 2.

4.1.3 Connected Target Pages without Links to Boosting Pages

We can form a third possible structure by connecting the two target pages and removing all links
to boosting pages, as shown in Figure 6. The corresponding PageRank equations yield the target
score p0 (q0 is symmetrical)

p0 =
ck + c2m

(1 + c)N
+

1
N

. (7)

The following theorem states that the scores of both target pages increase as compared to the
maximum for unconnected farms.

Theorem 5 For the structure presented in Figure 6, (p0 − p̄0) ∝ m and (q0 − q̄0) ∝ k.

Proof. The equation system that renders the PageRank scores for the pages has the following
form: 

p0 = c
[∑k

i=1 pi + q0

]
+ (1− c)/N

q0 = c
[∑m

j=1 qj + p0

]
+ (1− c)/N

pi = (1− c)/N, for i = 1, . . . , k

qj = (1− c)/N, for j = 1, . . . ,m
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By substituting pi = qj = (1 − c)/N into the first two equations and solving the system we
obtain:

p0 =
ck + c2m

(1 + c)N
+

1
N

and

q0 =
cm + c2k

(1 + c)N
+

1
N

.

Considering scores p̄0 and q̄0, we can state that p0 = p̄0 + µm + ν and q0 = q̄0 + µk + ν, where
µ = c2

(1+c)N and ν = c
(1+c)N .

The natural question that arises is how such an improvement was possible. A simple informal
analysis reveals the reason.

Let us first take a look at the total PageRank of the three discussed alliances, that is, the sum
of the PageRank scores of all target and boosting pages in each alliance. It turns out, that the
total score is exactly the same in all three cases, being equal to (k + m + 2)/N . It also turns out
that in the general case there is always an upper bound on the total PageRank score of a structure
with fixed connectivity to the rest of the web [1].

Now let us focus on the individual PageRank scores of the boosting pages. For the third
structure, the PageRank of each boosting page is minimal. In contrast, for the first two structures
the boosting pages have higher score, for the reason that the target pages have links pointing back to
the boosting pages. By eliminating these links in the third structure, we avoided the distribution of
a precious fraction of the total PageRank score to the boosting pages, which are irrelevant anyway.

Our conclusion is that the third structure yielded higher target scores because of a better
“housekeeping.” The total PageRank being limited, it assured that boosting pages stay low, while
all the rest of score gets properly distributed among the targets. In fact, it can be shown that
this structure is the optimal one for two farms, in the sense that it maximizes the sum of target
PageRank scores.

4.2 Web Rings

Now, as we know how to join two spam farms, it makes sense to try to extend our discussion to
larger alliances. We will call the subgraph of the target pages the core of the alliance. In the
extreme case, the core of a single spam farm is the target page alone. From among the plethora of
possible core structures for larger alliances (surveyed briefly in Section 4.4) in this paper we focus
on two:

• Web rings represent the simplest way of interconnecting several target pages. Also, such
structures are frequently encountered on the real web, and not necessarily in the context of
spam only. Web ring structures have been popular among groups of authors interested in the
same topic for long. In fact, web rings are one of the earliest forms in which web content was
organized.

• Alliances with completely connected subgraphs of targets, or complete cores, are the extreme
for a strongly connected group of targets.

We investigate each of these two structures in turn.
Our first way of connecting targets is by forming a ring, i.e., a cycle that includes all target

pages. Figure 7 shows such a structure for three spam farms.
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Figure 7: Three spam farms with target pages forming a ring.
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Figure 8: Three spam farms with target pages forming a complete core.

Solving the corresponding matrix equation yields the following PageRank score for the first
farm’s target:

p0 =
ck + c2m + c3n

(1 + c + c2)N
+

1
N

. (8)

For the more general case of F farms interconnected by forming a ring of the target pages, let
us denote the score of each target page by ti, and the number of boosting pages in each farm by
bi, where i = 1, . . . , F . For this structure, the score of the first target will be

t1 =

∑F
j=1 cjbj

N
∑F

j=1 cj−1
+

1
N

,

and, more generally, the PageRank score of target i will be

ti =

∑F
j=i c

j−i+1bj +
∑i−1

j=1 cj+F−i+1bj

N
∑F

j=1 cj−1
+

1
N

. (9)

4.3 Alliances with Complete Cores

Beside web rings, connecting each spam farm with all the others is another way to move to larger
structures from two collaborating spam farms.

Figure 8 shows the case when three spam farms collaborate by setting up a completely connected
subgraph of the targets. (Please note that the links from targets to boosting pages are removed,
just as for web rings. Boosting pages are not shown.)

Solving the corresponding matrix equation yields the following PageRank score for the first
farm’s target:

p0 =
2ck − c2k + c2m + c2n

(2 + c)N
+

1
N

.
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Again, the PageRank score of each target is greater than the maximum for unconnected farms.
The additional score comes from the other target pages, and each other target’s contribution is
proportional to the number of boosting pages in that target’s farm.

In the general case, we might have F farms with bi boosting pages each, and target page scores
ti, where i = 1, . . . , F . The PageRank scores of the targets are:

ti =
c(1− c)(F − 1)bi + c2

∑F
j=1 bj

(F + c− 1)N
+

1
N

. (10)

4.4 Other Core Structures

We have analyzed two possible ways of connecting the target pages of an alliance. While we will
continue to focus on the presented two structures in the rest of this paper, it is important to
emphasize that there are other ways to construct the core of an alliance. It is also important to
emphasize that the analysis of these other structures is similar to what is presented for rings and
alliances with complete cores. In this section we take a cursory look at an entire family of possible
cores.

Let us consider the F target pages of the farms in an alliance. There are 2(F−1)F possible ways
to connect F nodes and form a directed graph without self-loops. However, not all of these possible
graphs could act as an alliance core. In particular, the farms are actually allied only if the core
is weakly connected, that is, the underlying undirected graph is connected. Moreover, the core is
optimal (the sum of the target PageRank scores is maximal) only if it is strongly connected, that
is, there is a directed path from each target page to every other.

In Sections 4.2 and 4.3 we have seen two alliance structures with optimal cores. But how many
optimal cores exist for a specific F? What are the PageRank scores of the targets in each of them?

It turns out that answering the first question is not trivial. The number of strongly connected
directed graphs of F = 3, 4, 5, . . . nodes is 18, 1606, 565080, . . . This is Sloane’s integer sequence
A003030 [9] and we are not currently aware of any simple analytic generator function for it.

To answer the second question, we note the following: for each optimal core, it is possible to
produce the equations that yield the target PageRank scores, exactly as we did in case of the ring
and the complete core. In what follows, we attempt to provide a quantitative intuition of the
possible outcomes through an example.

Consider the alliance formed of F = 4 spam farms, each having 100 boosting pages. As
mentioned before, there are 1606 different optimal cores made up of 4 strongly connected target
pages. In a simple experiment, we computed the target PageRank scores (with c = 0.85) for all
the cores. Depending on the actual structure, each target PageRank can have one of 206 distinct
values that range from 32.14/N to 165.07/N . The values cover the range fairly uniformly. Hence,
we conclude that it is possible to obtain roughly any distribution of PageRank scores among the
targets by picking an appropriate core structure. The discussion on how to select a core that
matches a specific distribution constitutes the topic of future research.

5 Alliance Dynamics

In the previous sections we derived a number of formulas that help us determine the target Page-
Rank scores for different structures adopted in spam farm alliances. In this section we put our
formulas at work, showing how our results could help us answer a number of practical questions
of special importance. Among others, we seek answers to questions like: Why has one target in
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Figure 9: Scaled target PageRank scores with the farms connected in different ways.

an alliance larger score than another? Does it make sense for a new farm to join an existing al-
liance? Does it make sense for a farm to leave an existing alliance in which it participates? How
do additional boosting pages added to a farm influence its position within the alliance?

5.1 Being in an Alliance

Let us first look at what happens to some spam farms as soon as they form an alliance.
To illustrate, consider ten spam farms with target pages t1, . . . , t10. The first farm has b1 = 1000

boosting pages, the second has b2 = 2000, and so on with the last having b10 = 10000 boosting pages.
We discuss three scenarios. First, each farm could stay unconnected to the others, maximizing its
target score by adopting the structure presented in Figure 1. Second, the farms could form an
alliance with the targets connected in a ring: t1 points to t10, t10 to t9, and so on until the cycle
gets closed by t2 pointing to t1. Third, the farms could be interconnected so that the targets form
a complete core.

Now let us take a look at the PageRank of each target in all three scenarios. Figure 9 presents
the scores. The horizontal axis marks the ten farms. The vertical axis corresponds to the scaled
PageRank scores of the targets. (We scaled the PageRank scores by multiplying them by N, the
total number of web pages. This way, the obtained scaled scores are independent of the size of the
web.) The three curves correspond to the three scenarios.

As we can see, for unconnected farms the target PageRank is linear in the farm size. If the
targets form a complete core, each of the target PageRank scores increases with respect to the
unconnected case. Moreover, the increase is so that the smallest farm gains the most additional
PageRank and the largest gains the least. Even more intriguing, in case of the web ring some target
scores increase while some others drop below the unconnected case. In particular, the target of the
largest farm in the ring loses score.

Figure 10 helps us understand these phenomena. It shows the contributions of farm 1 to the
PageRank scores of different target pages that are either in a ring, or form a complete core. The
horizontal axis once again represents the farms. For each farm i, the vertical axis shows the fraction
of the scaled PageRank of ti that is due to the presence of farm 1 in the alliance.

Intuitively, Figure 10 shows what advantage of each farm draws from being connected to farm 1.
Please note that for the complete core a larger fraction of the PageRank is preserved for farm 1’s own
target, and the other targets receive a considerably smaller, identical contribution. In comparison,
in a web ring the contributions to itself and others are closer to each other, and decrease with the
distance from farm 1.

Let us derive the formulas that yielded Figure 10. Please note that Equation 9 and 10 can be
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Figure 10: Scaled PageRank contribution of the first farm to the others.

easily decomposed into independent terms corresponding to each farm in the alliance. Accordingly,
for a web ring the PageRank score contribution cr(i, i) of farm i to its own target i is

cr(i, i) =
c(1− c)bi

(1− cF )N
+

1
N

,

while the contribution cr(i, j) of farm i to target j, i 6= j, is

cr(i, j) =
cd(i,j)+1(1− c)bi

(1− cF )N
+

1
N

,

where d(i, j) denotes the distance, or number of hops, on the ring between targets i and j. For
instance, the distance between target t3 and t1 is 2, while between targets t1 and t3 it is 8.

Similarly, the self-contribution cc(i, i) for a complete core is

cc(i, i) =
c(1− c)(F − 1)bi + c2bi

(F + c− 1)N
+

1
N

,

and the contribution cc(i, j) of farm i to target j, i 6= j, is

cc(i, j) =
c2bi

(F + c− 1)N
+

1
N

.

Indeed, in case of the ring the contribution to others depends on the distance, while for the
complete core it is uniform. Also, it is easy to see that the total contribution of a farm is the same
for both structures:

F∑
j=1

cr(i, j) =
F∑

j=1

cc(i, j) =
cbi

N
.

Please note that the total contribution made by a farm is proportional to the number of boosting
pages. The contribution is independent of the interconnection structure between targets, as long
as the targets are not sinks and only point to other targets.

5.2 Joining an Alliance

With the interplay of contributions in our mind, we may ask a new set of questions. First, consider
an existing alliance and a new spammer who would like to join the alliance. Absent any payments,
existing members of the alliance should allow the newcomer to join only if the PageRank scores
of existing target pages increase. We would like to find out under what circumstances a new farm
satisfies this criterion.
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5.2.1 Web Rings

We first answer the previous question for web rings. For example, consider the case of adding a
new farm (farm 3, with target PageRank r0) to a ring of two farms 1 and 2 (with target PageRank
scores p0 and q0, respectively). Using Equations 7 and 8, we can derive that the owner of farm 1
gains score by allowing farm 3 to join only if

ck + c2m + c3n

(1 + c + c2)N
>

ck + c2m

(1 + c)N
,

hence,

n >
k + cm

1 + c
.

That is, the sizes of farms 1 and 2 determine the minimum size of farm 3 above which it is
beneficial for ring members to let the newcomer in. For instance, if k = 20 and m = 10, existing
members should let the new farm join the ring only if it has at least n = 16 > 15.4 boosting pages.

In general, it is beneficial to append a new farm at the end of the ring of F farms (i.e., between
tF and t1) if the following inequality is satisfied:

bF+1 >

∑F
i=1 ci−1bi∑F
i=1 ci−1

. (11)

As we can see, the lower bound on farm size is a weighted mean of the farm sizes already in the
alliance. Moreover, the weights depend on the position where the new farm is to be inserted.

It is interesting to follow how the insertion point influences minimum size. For instance, consider
Figure 11, which shows the minimum size of a new farm as a function of the insertion point. The
horizontal axis shows the farm in the ring before which the new one would be inserted. For instance,
if the farm after the new one is 3 then the new farm would be inserted between farms 2 and 3,
pointing to t2. The vertical axis shows the minimum size as required by Equation 11. For instance,
if the new farm is inserted before farm 1 the minimum size is only 4216, whereas if inserted before
farm 7, the minimum size is 6167.

5.2.2 Alliances with Complete Cores

Let us also investigate when it is beneficial to let a newcomer join an existing complete-core alliance.
Unfortunately, it turns out that the answer for completely connected targets is not as straightfor-
ward as it is for rings. In this case, a newcomer with bF+1 boosting pages is welcome (i.e., it
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increases every existing target’s score) only if it satisfies the following inequalities for i = 1, . . . , F :

(1− c)Fbi + c
∑F+1

j=1 bj

F + c
≥

(1− c)(F − 1)bi + c
∑F

j=1 bj

F + c− 1
.

Simplifying the terms we get an inequality for each bi:

bF+1 ≥

(∑F
j=1 bj

)
− (1− c)bi

F + c− 1
.

Fortunately, a closer look at the inequalities reveals that it is enough to satisfy one of them in
order to also satisfy all the rest:

Theorem 6 The inequality corresponding to the smallest farm already in the alliance determines
alone the minimum size of the newcomer farm.

Proof. Let b∗ represent the number of boosting pages in the smallest farm, so that b∗ ≤ bi, i =
1, . . . , F . It is easy to see that for any farm i,(∑F

j=1 bj

)
− (1− c)b∗

F + c− 1
≥

(∑F
j=1 bj

)
− (1− c)bi

F + c− 1
.

Accordingly, if bF+1 satisfies

bF+1 ≥

(∑F
j=1 bj

)
− (1− c)b∗

F + c− 1
it also satisfies all the other inequalities.

It follows that the lower bound on the number of boosting pages for the newcomer is given by
the inequality

bF+1 ≥

(∑F
j=1 bj

)
− (1− c)minF

i=1{bi}

F + c− 1
. (12)

From this result, we can find a convenient approximate lower bound to the size of the new farm.
Let us introduce η ≥ 1 so that ηb∗ corresponds to the arithmetic mean of farm sizes in the alliance.
Then, the previous inequality can be written as

bF+1 ≥
Fηb∗ − (1− c)b∗

F + c− 1
=

Fη + c− 1
F + c− 1

b∗ .

As F � (c− 1), we can safely assume that

Fη + c− 1
F + c− 1

' η .

Hence, if the new farm satisfies Equation 12, it also satisfies bF+1 ≥ ηb∗, and the current average
farm size ηb∗ is very close to (but below) the lower bound on the new farm’s minimum size.

To illustrate the previous results, consider the alliance of two interconnected farms with k = 20
and m = 10 boosting pages. It makes sense to accept a third and form a complete-core alliance if{

t3 ≥ 15.4054 for farm with 10 boosting pages,
t3 ≥ 14.5946 for farm with 20 boosting pages.

Therefore, the third farm should have at least 16 boosting pages.
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5.3 Leaving an Alliance

We may also ask: When does it make sense for a farm that is part of an existing alliance to
split off from the alliance and continue to exist as a stand-alone farm instead? We have seen in
Figure 9 that target t10 had a lower PageRank in a ring than it would have had if it were alone. Our
intuition is that the contribution of farm 10 to the others is too large, and it does not receive enough
contribution from the others in return. Let us formalize this intuition by deriving the appropriate
inequalities for rings and alliances with complete cores.

5.3.1 Web Rings

A farm should leave an alliance if the PageRank of its target is lower than it would be when the
farm were unconnected to others, and had an optimal internal structure as shown in Figure 1. The
corresponding inequality for the first farm in a ring is

cb1 + 1
(1 + c)N

≥
∑F

i=1 cibi

N
∑F

i=1 ci−1
+

1
N

,

with the solution

b1 ≥
cF − c(1− c2)

∑F−1
i=1 cibi+1

c2 − cF
. (13)

For instance, farm 1 should have 11389 boosting pages for it to make sense to leave the ring.
On the other hand, the limit for farm 10 is 9091. As its size is 10000, which is above the limit, the
PageRank of farm 10’s target is lower than it would be if the farm were unconnected.

5.3.2 Alliances with Complete Cores

Similarly, it makes sense for farm 1 to leave an alliance with complete core if the following inequality
is satisfied:

cb1 + 1
(1 + c)N

≥
c(1− c)(F − 1)b1 + c2

∑F
i=1 bi

F + c− 1
+

1
N

.

The solution is

b1 ≥
F + c− 1 + (1 + c)

∑F
i=1 bi

c2(F − 2)
. (14)

Here the differences between the minimum sizes for the various farms are less than they were
for web rings, as the contributions get distributed more uniformly. For instance, the limit for farm
1 is 14693, while for farm 10 is 12445. As none of the farms reaches the size limit in Figure 9, it
makes sense for all of them to stay in the alliance.

5.4 Adding More Boosting Pages

Another situation that might arise is when a spammer participating in an alliance wishes to add
more boosting pages to its own farm. Such increase in the number of boosting pages increases the
contribution of that farm to its own target and all others in the alliance, following the patterns
shown in Figure 10. Obviously, the more new boosting pages are added, the closer the farm gets
to the limit for leaving, as stated in Inequalities 13 and 14. The question is, given the current size
of farm i, how many pages need to be added to farm i before it is better off on its own?

We can find the answer to this question by taking a look at the difference between the minimum
size as determined by Inequalities 13 and 14 and the current size of the farm. Figure 12 presents
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Figure 12: Additional boosting pages required before leaving.

the corresponding results for our 10 spam farms connected either in a ring or in an alliance with
complete core. The horizontal axis shows farm numbers, while the vertical axis represents the
minimum number of additional boosting pages a spammer should add, so that the target PageRank
after leaving the alliance would be higher than the PageRank when staying in the alliance. For
instance, if farm 3 with a current number of 3000 boosting pages would receive approximately 10000
more boosting pages, it could achieve higher target PageRank by splitting off from a complete-core
alliance than staying within it. Please note that farm 10 is already above the limit for the ring
structure. In such an instance, the spammer might want to leave the alliance, drop some boosting
pages, or charge the others for the “loss” incurred due to staying in the alliance.

6 Generalized Link Spam Structures

Our analysis so far has focused on optimal spam farms and how they can be interconnected.
However, the use of optimal structures makes it easier to detect spam farms (see Section 7), so
spammers might try to deviate from the best structures, even if the rankings of their target pages
decrease somewhat. Still, to avoid losing too much PageRank, spammers may not want to deviate
too much. This means that “real” structures will still resemble the ones we have studied.

To illustrate, consider the graph in Figure 13. What seems to be an irregular, convoluted
structure at first, is in fact an alliance of seven spam farms, and can be analyzed as such.

For instance, we can identify several special boosting structures in the figure. The group
of pages {p, q, r} is one such structure that boosts target t. Boosting structures can always be
modeled through an equivalent number of simple boosting pages with an only link pointing to the
target. For instance, the contribution of the group {p, q, r} in Figure 13 is equivalent to that of
2 · 0.85 + 1 = 2.7 simple boosting pages. The total boosting target t gets is equal to that produced
by b1 = 5.2 simple boosting pages. After accounting for all boosting structures, we find that the
total boosting effect for the entire alliance is equivalent to that of b = 11.55 simple boosting pages.

We also discover that the target pages (gray nodes) form an optimal core. Accordingly, the
total target PageRank is (cb + 7)/N .

Thus, the structures encountered in practice can be modeled by equivalent optimal structures.
In particular, the effect of complex boosting structures can be modeled easily through an equivalent
number of simple boosting pages, as illustrated in the previous example. Leakage can also be
incorporated as if it were some additional boosting pages, as mentioned in Section 3.4. The structure
that interconnects the target pages may be a ring or a complete core, or one of the graphs discussed
in Section 4.4. In conclusion, we believe that the insights obtained for the regular spam farms and
alliances also hold for the generalized link spam structures.
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7 Countermeasures

In this paper we have studied spam farms and alliances from the point of view of the spammer:
What are the optimal structures? How can they be interconnected? What are the costs and benefits
when spammers collaborate? We have argued that understanding the spammer’s side can provide
essential insights for combating spam. After all, how can one fight spam without knowing what
one is up against?

Of course, understanding farms and alliances does not automatically solve the spam detection
problem. As a matter of fact, detection is in its infancy, and as one develops better tools for
combating spam, spammers adapt and devise more resistant schemes. In this closing section we
briefly summarize some of the spam detection techniques that have been developed to date, and
we argue that understanding the spammer’s side played an important role in developing these
techniques.

The basic idea for detecting link spam is to identify, directly or indirectly, structures like the
ones we have studied in this paper. While the presence of these structures does not necessarily
mean link spamming, it does indicate potential candidates. We next outline three schemes used in
counteracting some forms of link spamming.

1. In practice, large spam farms are often machine-generated and have very regular structures. A
number of techniques are available to detect such instances of link spam. For example, Fetterly
et al. [2] analyze the indegree and outdegree distributions of web pages. Most pages have in-
and outdegrees that follow a Zipfian distribution. Occasionally, however, one encounters
substantially more pages with the exact same in- or outdegrees as expected according to the
distribution. The authors find that the vast majority of such outliers are spam pages that
belong to large farms.

2. A common feature of the alliances presented in this paper is that target pages are very effective
at harnessing the boosting provided by other pages. For instance, the two target pages of the
alliance in Section 4.1.3 have a total PageRank score p0 + q0 = [c(k + m) + 2] /N , most of it
coming from the (k + m) boosting pages. At the same time, the contribution of the boosting
pages is only

c

 k∑
i=1

pi +
m∑

j=1

qj

 =
c(1− c)(k + m)

N
.

The ratio between the two sums is of order

p0 + q0∑k
i=1 pi +

∑m
j=1 qj

= O

(
1

1− c

)
, (15)
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that is, the target pages amplify the contribution of the boosting pages by a factor of ap-
proximately 1/(1− c). This effect is achieved through the strong interconnection between the
target pages, and can also be observed for the other optimal alliances that we presented.

Based on the previous observation, Zhang et al. [10] provide a method for identifying strongly
interconnected groups of web pages. For any group of web pages H, they define the amplifi-
cation factor Amp(H), which is just the the ratio between the total PageRank of the pages
in the group and the contribution received from other pages outside the group, as illustrated
in Equation 15. If the amplification factor of a group is close to 1/(1 − c), it is said that
the pages in the group are colluding. Since the target pages of spam alliances collude, the
corresponding large amplification factors reveal them.

3. Another observation that we can make about spam alliances is that most of the target Page-
Rank scores are accumulated through boosting. Accordingly, boosting pages contribute their
minimal score (which is due to the random jump) to increase the ranking of the target(s).
We can measure the magnitude of the boosting effect as follows. Consider for instance the
farm structure in Figure 1. The PageRank score of the target is

p0 =
1

1− c2

[
cλ +

(1− c)(ck + 1)
N

]
.

Now, if one “cuts off” the random jump going to the pages in the farm, the target score is
only p̃0 = 1

1−c2
cλ, and the difference (p0 − p̃0) is large. Thus, for target pages that benefit

from significant boosting, the ratio (p0 − p̃0)/p0 is large. On the other hand, for web pages
that do not benefit from boosting, the ratio is close to zero.

Based on our understanding of farms and alliances, and using this observation, we have
developed a new spam detection scheme [3]. The method combines two scores for each web
page i: the regular PageRank pi and a biased PageRank p̃i, for which the random jump is
“cut off” (set to zero) for all but some known non-spam pages. The ratio (pi− p̃i)/pi, is called
the relative spam mass Mass(i) of page i, and used to identify the target pages of the largest
spam farms. In our experiments (using the full index of the Yahoo! search engine) we have
found that on the order of 95–100% of the web hosts identified by our detection scheme are
actual link spam target hosts of very large farms.

The techniques we have outlined are useful, but are still far from perfect. Solution 1 often
fails to identify non-regular farm structures (like the one shown in Figure 13), which are typical
of more sophisticated (and higher-ranking) spammers. Solution 2 identifies any colluding group of
pages, which may or may not be spam. (For example, the colluding pages could simply be weblogs
frequently referencing each other.) Thus, it is not a spam detection technique per se, though it could
have a pivotal role in spam detection. Solution 3 is effective in detecting instances of significant
boosting, but, for example, it fails to detect target pages that obtain most of their scores through
leakage. On the positive side, both Solutions 2 and 3 are effective as spammers deviate from the
optimal structures in an effort to conceal their farms and alliances, as discussed in Section 6.

Incidentally, Solutions 2 and 3 could be used together: first, relative mass can help spotting
out some pages of a spam farm, then the amplification factor can be used to identify neighboring
pages that together render a very effectively organized (highly colluding) link spam structure.

The presented solutions identify only some of the pages of a farm or alliance, typically the core.
Other techniques, such as the spectral analysis of the co-reference matrix, could then be used to
reveal the other connected spam pages.
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8 Conclusions

The analysis that we have presented shows how the PageRank of target pages can be maximized
in spam farms. Most importantly, we find that there is an entire class of farm structures that yield
the largest achievable target PageRank score. All such optimal farm structures share the following
properties:

• All boosting pages point to and only to the target,

• All hijacked links point to the target,

• There are some links from the target to one or more boosting pages.

We have investigated how spammers with originally unconnected farms could cooperate and set
up alliances that increase the target PageRank scores. We presented the optimal alliance for two
farms, and introduced two possible structures for larger alliances, one with the targets forming a
rings and another with the targets forming a complete core. Our major finding is that alliances could
further improve the PageRank of each target in the alliance; the distribution of target PageRank
scores depends on the way the targets are interconnected.

We have also analyzed the dynamics of alliances, determining under what conditions should
new farm be added, or should current members leave an existing alliance.

As argued, a first, critical step in combating link spam is understanding what one is up against.
We believe that our analysis of spam farms and alliances provides a solid understanding of some
spamming techniques, and could lead to effective schemes for combating link spam.
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