
CS109B ML Notes for the Week of 5/22/95AbstypesGoal: complete concealment of the values of adatatype.� It is impossible to access values of thisdatatype except through the functions pro-vided.� Syntax:1. A datatype, with the keyword abstypein place of datatype.2. A list of de�nitions surrounded bywith...end.Example: Our previous example of a stack struc-ture allowed stacks to be modi�ed by ways otherthan the functions provided in the structure.� It is only a few structures that have that
aw.You need to both:a) Have a function like create that allowsassignment of a value from that structureto an external variable.b) Have a type for those values that is mod-i�able, i.e., a ref or array.Note, e.g., that an array like register inthe Random structure cannot be attackedbecause it remains internal to the struc-ture, i.e., condition (a) is not met, and itis declared local.� Ironclad protection is obtained through theabstype. By wrapping values in a data con-structor, these values cannot be seen, letalone modi�ed, other than through the func-tions de�ned after the with.That is the abstype's \superpower"; itsconstructors are local, while those of adatatype are global.1

Example: Here is the stack example with valueswrapped in data constructor Stk.abstype '1a stack =Stk of '1a list refwithexception EmptyStack;fun create(x:'1a) = Stk(ref [x]);fun push(x,Stk(s)) = s := x:: !s;fun top(Stk(ref nil)) = raise EmptyStack| top(Stk(ref(x::xs))) = x;fun pop(Stk(ref nil)) = raise EmptyStack| pop(Stk(s)) = s := tl(!s);end;� Note that funny type variable '1a. It isneeded because we de�ne a stack to be a ref-erence to a list of elements of this type, andreferences cannot be to arbitrary types.The type must involve only concrete sub-types, e.g., int*int or int->int, butnot 'a or 'a->'a.� We can do the usual push, pop, etc., as if theStk weren't there.� But an attempt to get at the value of a stackdirectly is doomed to failure:fun grab(Stk(x)) = tl(!x);Error: non-constructor applied to argument in pattern: StkFunctors (Simple Form)Consider the structure Random from the previousnotes. It had built into it a particular size of theregister array and a particular \feedback func-tion," the positions of the array that got comple-mented.� We might like to generate a number of similarstructures with di�erent sizes and feedbackfunctions.� The functor is the ML construct that lets usdo so. It consists of, in its simplest form:2

1. The keyword functor followed by thename of the functor.2. A parenthesized argument structure andits signature.3. An equal sign and the de�nition of thestructure created by the functor from theargument structure.Example: Here is a signature suitable for theargument of a functor MakeRandom.� This signature describes an integer n (the sizeof the register) and a list feed of the positionsin the register that get complemented.signature RANDOM DATA = sigval n : int;val feed : int list;end;The functor MakeRandom is in Fig. 1.� Notice how the output structure of the func-tor must open the input structure (the lineopen Data) in order to get the needed com-ponents n and feed.Applying a FunctorNow, we can de�ne a structure with the correctsignature to provide the needed parameters, n andfeed. Here is an example:structure MyData: RANDOM DATA = structval n = 20;val feed = [0,2,4,6,7,14,17,19];end;Finally, we apply functor MakeRandom to the struc-ture MyData. The result is another structure, Ran-dom, that behaves like the old Random, but with thenew size n and new feedback function.structure Random = MakeRandom(MyData);This structure Random is used exactly like the onefrom the previous notes.3

functor MakeRandom(Data: RANDOM DATA):sig open Data;val init: unit -> unit;val getBit: unit -> int;end= structopen Data;val register = array(n,0);fun feedback1(nil) = ()| feedback1(x::xs) = (update(register,x,1-sub(register,x));feedback1(xs));fun feedback() = feedback1(feed);fun shift1(0) = update(register,0,0)| shift1(i) = (update(register,i,sub(register,i-1));shift1(i-1));fun shift() = shift1(n-1);fun init1(0) = (update(register,n-1,1);update(register,0,0))| init1(i) = (update(register,i,0);init1(i-1))fun init() = init1(n-1);fun getBit() =let val bit = sub(register,n-1);in (shift();if bit=1 then feedback() else ();bit)end;end; Fig. 1. Functor MakeRandom.
4

